首页> 外文期刊>Journal of computational science >Sensitivity analysis of control parameters in particle swarm optimization
【24h】

Sensitivity analysis of control parameters in particle swarm optimization

机译:粒子群优化控制参数的敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

Particle Swarm Optimization (PSO) is a powerful nature-inspired metaheuristic optimization method that may determine optimal solutions of engineering problems in fewer evaluations compared to other optimization methods. However, the literature shows that PSO may suffer from converging prematurely to a local solution, and this occurs due to poor tuning of the control parameters in PSO. In this paper, an extensive parametric sensitivity analysis was conducted to understand the impact of the individual control parameters and their respective influence on the performance of PSO. A benchmark constrained optimization problem was considered for studying PSO by modifying each parameter one-at-a-time. Therefore, initially, a constraint handling technique was formulated to allow particles to update their best historical solutions according to the feasibility. Results of the sensitivity analysis revealed that PSO was most sensitive to the inertia weight, cognitive component, and social component. The optimal parameter set, determined from the sensitivity analysis, was verified by comparison with metaheuristic methods. The verification study shows that the proposed parameter setting outperformed the other methods in all but one case, where it performed competently. (C) 2020 Elsevier B.V. All rights reserved.
机译:粒子群优化(PSO)是一种强大的性质启发性的常规优化方法,与其他优化方法相比,可以确定更少的评估中的工程问题的最佳解决方案。然而,文献表明,PSO可能遭受过早地会聚到局部解决方案,并且这发生由于PSO中的控制参数差。本文进行了广泛的参数敏感性分析,以了解各种控制参数的影响及其对PSO性能的各自影响。通过一次性修改每个参数来研究PSO的基准约束优化问题。因此,最初,配制了约束处理技术,以允许颗粒根据可行性更新其最佳历史解决方案。敏感性分析的结果表明,PSO对惯性重量,认知组件和社会部件最敏感。通过与血为性方法进行比较,验证了从灵敏度分析确定的最佳参数集。验证研究表明,所提出的参数设置在所有情况下都表现出了其他一种方法,其中胜任地执行。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号