首页> 外文期刊>Journal of computational science >Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations
【24h】

Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations

机译:理想MHD方程的无局部散度的中心不连续Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose and numerically investigate a family of locally divergence-free central discontinuous Galerkin methods for ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods (SIAM Journal on Numerical Analysis 45 (2007) 2442-2467) for hyperbolic equations, with the use of approximating functions that are exactly divergence-free inside each mesh element for the magnetic field. This simple strategy is to locally enforce a divergence-free constraint on the magnetic field, and it is known that numerically imposing this constraint is necessary for numerical stability of MHD simulations. Besides the designed accuracy, numerical experiments also demonstrate improved stability of the proposed methods over the base central discontinuous Galerkin methods without any divergence treatment. This work is part of our long-term effort to devise and to understand the divergence-free strategies in MHD simulations within discontinuous Galerkin and central discontinuous Galerkin frameworks.
机译:在本文中,我们提出并用数值方法研究了理想磁磁流体动力学(MHD)方程的无局部散度的中心不连续Galerkin方法。这些方法基于双曲线方程组的原始中央不连续Galerkin方法(SIAM Journal on Digital Analysis 45(2007)2442-2467),使用的近似函数在磁场的每个网格元素内部都完全无散度。这种简单的策略是在磁场上局部施加无散度约束,并且众所周知,对MHD仿真的数值稳定性必须在数字上强加此约束。除了设计的精度,数值实验还证明了所提出的方法比基本的中心不连续伽勒金方法具有更高的稳定性,而没有任何发散处理。这项工作是我们长期努力的一部分,目的是在不连续的Galerkin和中心不连续的Galerkin框架内设计和理解MHD仿真中的无差异策略。

著录项

  • 来源
    《Journal of computational science》 |2013年第2期|80-91|共12页
  • 作者单位

    Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, United States;

    Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

    Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号