首页> 外文期刊>Journal of computational science >Efficient determination of the critical parameters and the statistical quantities for Klein-Gordon and sine-Gordon equations with a singular potential using generalized polynomial chaos methods
【24h】

Efficient determination of the critical parameters and the statistical quantities for Klein-Gordon and sine-Gordon equations with a singular potential using generalized polynomial chaos methods

机译:使用广义多项式混沌方法有效确定奇异势的Klein-Gordon和Sine-Gordon方程的关键参数和统计量

获取原文
获取原文并翻译 | 示例

摘要

We consider the Klein-Gordon and sine-Gordon type equations with a point-like potential, which describe the wave phenomenon with a defect. The singular potential term yields a critical phenomenon - that is, the solution behavior around the critical parameter value bifurcates into two extreme cases. Finding such critical parameter value and the associated statistical quantities demands a large number of individual simulations with different parameter values. Pinpointing the critical value with arbitrary accuracy is even more challenging. In this work, we adopt the generalized polynomial chaos (gPC) method to determine the critical values and the mean solutions around such values. First, we consider the critical value associated with the strength of the singular potential for the Klein-Gordon equation. We expand the solution in the random variable associated with the parameter. The obtained equations are solved using the Chebyshev collocation method. Due to the existence of the singularity, the Gibbs phenomenon appears in the solution, yielding a slow convergence of the numerically computed critical value. To deal with the singularity, we adopt the consistent spectral collocation method. The gPC method, along with the consistent Chebyshev method, determines the critical value and the mean solution highly efficiently. We then consider the sine-Gordon equation, for which the critical value is associated with the initial velocity of the kink soliton solution. The critical behavior in this case is that the solution passes through (particle-pass), is trapped by (particle-capture), or reflected by (particle-reflection) the singular potential if the initial velocity of the soliton solution is greater than, equal to, or less than the critical value, respectively. Due to the nonlinearity of the equation, we use the gPC mean value instead of reconstructing the solution to find the critical parameter. Numerical results show that the critical value can be determined efficiently and accurately by the proposed method.
机译:我们考虑具有点状电势的Klein-Gordon和Sine-Gordon型方程,它们描述了带有缺陷的波动现象。奇异势项会产生一个临界现象-即,围绕临界参数值的求解行为分为两个极端情况。找到这样的关键参数值和相关的统计量需要大量具有不同参数值的单独模拟。精确确定临界值更具挑战性。在这项工作中,我们采用广义多项式混沌(gPC)方法来确定临界值和围绕这些值的均值解。首先,我们考虑与Klein-Gordon方程的奇异电位强度相关的临界值。我们在与参数关联的随机变量中扩展解。使用Chebyshev搭配方法求解获得的方程。由于存在奇点,解决方案中出现了吉布斯现象,从而使数值计算的临界值收敛缓慢。为了处理奇点,我们采用一致的频谱配置方法。 gPC方法与一致的Chebyshev方法一起可以高效地确定临界值和均值解。然后,我们考虑正弦-戈登方程,其临界值与扭结孤子解的初始速度相关。在这种情况下,关键行为是:如果孤子溶液的初始速度大于,则溶液通过(粒子通过),被(粒子捕获)捕获或被(粒子反射)反射为奇异电位。分别等于或小于临界值。由于方程的非线性,我们使用gPC平均值代替重构解决方案以找到关键参数。数值结果表明,该方法可以有效,准确地确定临界值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号