首页> 外文期刊>Journal of computational science >Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
【24h】

Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network

机译:使用单个卷积神经网络分割视盘,中央凹和视网膜脉管系统

获取原文
获取原文并翻译 | 示例

摘要

We have developed and trained a convolutional neural network to automatically and simultaneously segment optic disc, fovea and blood vessels. Fundus images were normalized before segmentation was performed to enforce consistency in background lighting and contrast. For every effective point in the fundus image, our algorithm extracted three channels of input from the point's neighbourhood and forwarded the response across the 7-layer network. The output layer consists of four neurons, representing background, optic disc, fovea and blood vessels. In average, our segmentation correctly classified 92.68% of the ground truths (on the testing set from Drive database). The highest accuracy achieved on a single image was 94.54%, the lowest 88.85%. A single convolutional neural network can be used not just to segment blood vessels, but also optic disc and fovea with good accuracy. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们已经开发并训练了卷积神经网络,可以自动并同时分割视盘,中央凹和血管。在执行分割以增强背景照明和对比度的一致性之前,将眼底图像标准化。对于眼底图像中的每个有效点,我们的算法从该点的邻域提取了三个输入通道,并将响应转发到7层网络中。输出层由四个神经元组成,分别代表背景,视盘,中央凹和血管。平均而言,我们的细分正确地分类了92.68%的基本事实(根据Drive数据库中的测试集)。单张图像的最高准确度为94.54%,最低的为88.85%。单个卷积神经网络不仅可以用于分割血管,还可以用于视盘和中央凹的精确分割。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号