首页> 外文期刊>Biomedical signal processing and control >Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc
【24h】

Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc

机译:用于同时检测中央凹和视盘的多尺度顺序卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

HighlightsWe present a fast new multiscale deep learning approach to object localisation.We locate automatically the fovea and optic disc simultaneously in fundus images.Our method is fully automatic, needing no prior processing or user intervention.We show excellent results using patient specfic measure for comparison across datasets.Our method is robust to image quality and we show good generalisation to new data.AbstractDetecting the locations of the optic disc and fovea is a crucial task towards developing automatic diagnosis and screening tools for retinal disease. We propose to address this challenging problem by investigating the potential of applying deep learning techniques to this field. In the proposed method, simultaneous detection of the centers of the fovea and the optic disc (OD) from color fundus images is considered as a regression problem. A deep multiscale sequential convolutional neural network (CNN) is designed and trained. The publically available MESSIDOR and Kaggle datasets are used to train the network and evaluate its performance. The centers of the fovea and the OD in each image were marked by expert graders as the ground truth. The proposed method achieves an accuracy of 97%, 96.7% for the detection of the OD center and 96.6%, 95.6% for the detection of the foveal center of the MESSIDOR and Kaggle test sets respectively. Our promising results demonstrate the excellent performance of the proposed CNNs in simultaneously detecting the centers of both the fovea and OD without human intervention or handcrafted features. Moreover, we can localize the landmarks of an image in 0.007s. This approach could be used as a crucial part of automated diagnosis systems for better management of eye disease.
机译: 突出显示 我们提出了一种快速的新型多尺度深度学习方法来进行对象定位。 我们会自动在眼底图像中同时定位中央凹和视盘。 我们的方法是全自动的,不需要事先处理或用户干预。 我们使用展示了出色的效果跨数据集进行比较的患者特定测量。 我们的方法对图像质量具有鲁棒性,并且对新数据显示出良好的概括性。 摘要 检测光盘和中央凹的位置是开发自动光盘的关键任务视网膜疾病的诊断和筛查工具。我们建议通过研究将深度学习技术应用于该领域的潜力来解决这一具有挑战性的问题。在提出的方法中,从彩色眼底图像同时检测中央凹和视盘中心的问题被认为是回归问题。设计并训练了深度多尺度顺序卷积神经网络(CNN)。公开可用的MESSIDOR和Kaggle数据集用于训练网络并评估其性能。专家评分者将每个图像中的中央凹和OD的中心标记为地面真相。所提出的方法对OD中心的检测准确度分别为97%,96.7%,对MESSIDOR和Kaggle测试集的中央凹中心的检测准确度分别为96.6%,95.6%。我们有希望的结果证明了所提出的CNN在无需人工干预或手工特征的情况下同时检测中央凹和OD中心的出色性能。此外,我们可以在0.007s内定位图像的界标。这种方法可以用作自动诊断系统的关键部分,以更好地管理眼部疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号