首页> 外文期刊>Journal of computational science >Multi-threaded dense linear algebra libraries for low-power asymmetric multicore processors
【24h】

Multi-threaded dense linear algebra libraries for low-power asymmetric multicore processors

机译:低功耗非对称多核处理器的多线程密集线性代数库

获取原文
获取原文并翻译 | 示例

摘要

Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collection of numerical tools for many scientific and engineering applications. While there exist high performance implementations of the BLAS (and LAPACK) functionality for many current multi-threaded architectures, the adaption of these libraries for asymmetric multicore processors (AMPs) is still pending. In this paper we address this challenge by developing an asymmetry-aware implementation of the BLAS, based on the BLIS framework, and tailored for AMPs equipped with two types of cores: fast/power-hungry versus slow/energy-efficient. For this purpose, we integrate coarse-grain and fine-grain parallelization strategies into the library routines which, respectively, dynamically distribute the workload between the two core types and statically repartition this work among the cores of the same type.
机译:密集的线性代数库,例如BLAS和LAPACK,为许多科学和工程应用提供了一组相关的数值工具。尽管存在用于许多当前多线程体系结构的BLAS(和LAPACK)功能的高性能实现,但这些库是否适用于非对称多核处理器(AMP)仍在等待中。在本文中,我们通过基于BLIS框架开发一种不对称感知的BLAS实现方案来解决这一挑战,并为配备两种类型内核的AMP量身定制:快速/耗电的内核与慢速/节能的内核。为此,我们将粗粒度和细粒度并行化策略集成到库例程中,该例程分别在两种核心类型之间动态分配工作负载并在同一类型的核心之间静态重新分配此工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号