首页> 外文期刊>Concurrency and computation: practice and experience >Analysis of dynamically scheduled tile algorithms for dense linear algebra on multicore architectures
【24h】

Analysis of dynamically scheduled tile algorithms for dense linear algebra on multicore architectures

机译:多核体系结构上稠密线性代数的动态调度图块算法分析

获取原文
获取原文并翻译 | 示例

摘要

The objective of this paper is to analyze the dynamic scheduling of dense linear algebra algorithms on shared-memory, multicore architectures. Current numerical libraries (e.g., linear algebra package) show clear limitations on such emerging systems mainly because of their coarse granularity tasks. Thus, many numerical algorithms need to be redesigned to better fit the architectural design of the multicore platform. The parallel linear algebra for scalable multicore architectures library developed at the University of Tennessee tackles this challenge by using tile algorithms to achieve a finer task granularity. These tile algorithms can then be represented by directed acyclic graphs, where nodes are the tasks and edges are the dependencies between the tasks. The paramount key to achieve high performance is to implement a runtime environment to efficiently schedule the execution of the directed acyclic graph across the multicore platform. This paper studies the impact on the overall performance of some parameters, both at the level of the scheduler (e.g., window size and locality) and the algorithms (e.g., left-looking and right-looking variants). We conclude that some commonly accepted rules for dense linear algebra algorithms may need to be revisited.
机译:本文的目的是分析密集型线性代数算法在共享内存,多核体系结构上的动态调度。当前的数值库(例如,线性代数包)对此类新兴系统显示出明显的局限性,这主要是由于它们的粗粒度任务。因此,需要重新设计许多数值算法,以更好地适应多核平台的体系结构设计。田纳西大学开发的可扩展多核体系结构库的并行线性代数通过使用切片算法来实现更精细的任务粒度来解决这一挑战。然后,这些平铺算法可以用有向无环图表示,其中节点是任务,边是任务之间的依赖关系。实现高性能的最重要的关键是实现运行时环境,以有效地调度多核平台上有向无环图的执行。本文研究了在调度程序级别(例如,窗口大小和位置)和算法(例如,左眼和右眼变体)方面对某些参数的整体性能的影响。我们得出的结论是,可能需要重新讨论稠密线性代数算法的一些公认规则。

著录项

  • 来源
  • 作者单位

    Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA;

    Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA;

    Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA;

    Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennesse,School of Mathematics & School of Computer Science, University of Manchester;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dense linear algebra; dynamic scheduling; looking variants; multicore architectures;

    机译:密线性代数动态调度;外观变型;多核架构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号