首页> 外文期刊>Computer science >Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency
【24h】

Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

机译:在多核架构上分析高性能密集线性代数算法,以提高功率和能效

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency.
机译:本文介绍了两个高性能密集线性代数库(LAPACK和PLASMA)的功率分布。前者基于使用fork-join范例实现并行性能的块算法。后者使用细粒度的任务并行性,该并行性重塑了计算以对称为图块的子矩阵进行操作。以这种方式形成瓦片算法。我们展示了最常用例程的性能分析结果,这使我们能够清楚地识别出计算的不同阶段。这使我们能够在能源效率方面隔离瓶颈。我们的结果表明,PLASMA不仅在性能方面而且在能源效率方面都超过LAPACK。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号