首页> 外文期刊>Parallel Computing >Energy balance between voltage-frequency scaling and resilience for linear algebra routines on low-power multicore architectures
【24h】

Energy balance between voltage-frequency scaling and resilience for linear algebra routines on low-power multicore architectures

机译:低功耗多核架构上线性代数例程的电压-频率缩放和弹性之间的能量平衡

获取原文
获取原文并翻译 | 示例

摘要

Near Threshold Voltage (NTV) computing has been recently proposed as a technique to save energy, at the cost of incurring higher error rates including, among others, Silent Data Corruption (SDC). In this paper, we evaluate the energy efficiency of dense linear algebra routines using several low-power multicore processors and we analyze whether the potential energy reduction achieved when scaling the processor to operate at a low voltage compensates the cost of integrating a fault tolerance mechanism that tackles SDC. Our study targets algorithmic-based fault-tolerant versions of the dense matrix-vector and matrix(matrix) multiplication kernels (GEMV and GEMM, respectively), using the BLIS framework, as well as an implementation of the LU factorization with partial pivoting built on top of GEMM, Furthermore, we tailor the study for a number of representative 32-bit and 64-bit multicore processors from ARM that were specifically designed for energy efficiency. (C) 2017 Elsevier B.V. All rights reserved.
机译:近来已提出了近阈值电压(NTV)计算作为一种节省能源的技术,其代价是产生较高的错误率,其中包括静默数据损坏(SDC)。在本文中,我们使用多个低功耗多核处理器评估了密集线性代数例程的能效,并分析了将处理器缩放至低电压运行时所实现的潜在能量减少是否补偿了集成容错机制的成本,解决SDC。我们的研究使用BLIS框架,针对密集矩阵矢量和矩阵(矩阵)乘法内核(分别为GEMV和GEMM)的基于算法的容错版本,以及基于部分透视的LU分解实现。此外,我们针对ARM的一些具有代表性的32位和64位多核处理器(专门为提高能效而设计)进行了量身定制。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号