首页> 外文期刊>Journal of computational science >Feature engineering using homogenization theory with multiscale perturbation analysis for supervised model-based learning of physical clogging condition in seepage filters
【24h】

Feature engineering using homogenization theory with multiscale perturbation analysis for supervised model-based learning of physical clogging condition in seepage filters

机译:基于均质化理论和多尺度扰动分析的特征工程,用于基于模型的监督学习中渗流过滤器的物理堵塞条件

获取原文
获取原文并翻译 | 示例

摘要

Aquifer recharge and recovery systems (ARRS), which can broadly be analysed as seepage depth filters, in natural or engineered aquifers are gaining attention worldwide. Engineering predictions of their complex physical clogging behavior, however, continue to be challenging which has hindered the predictive maintenance of these systems for energy and materials savings. To address this problem statement, we leverage the homogenization theory with the multiscale perturbation analysis as the feature engineering step to reduce the complexity of the physical clogging behavior in ARRS. The analytical approach systematically derives a unique homogenized representation which quantifies the clogging condition at the macroscale. A series of physical parameters are identified from the derived homogenized representation to build a pre-processed input layer into our own multi-layered neural network (NN) architecture for predictive analysis. Measured data extracted from the literature is then used to train and verify the NN model. The trained model yields an average error deviation of 20% between the model's predictions and the respective measurements for an optimized set of hyperparameters tested. We then discuss quantitatively how the model can be adhered to predict the timing for a concerned ARRS to reach its breakthrough stage for a range of operational conditions. Finally, we also demonstrate how the homogenized representation can be useful to determine an arbitrary filter's critical reaction rate and diffusion coefficient responsible for its breakthrough stage. (C) 2019 Elsevier B.V. All rights reserved.
机译:天然或工程含水层中的含水层补给和回收系统(ARRS)可以广泛地分析为渗流深度过滤器,因此受到了全世界的关注。然而,对其复杂的物理堵塞行为的工程预测仍然具有挑战性,这阻碍了这些系统的预测维护,以节省能源和材料。为了解决这个问题,我们将均质化理论与多尺度扰动分析一起作为特征工程步骤,以降低ARRS中物理阻塞行为的复杂性。该分析方法系统地导出了唯一的均质化表示形式,该表示形式可量化宏观尺度上的堵塞情况。从派生的均质表示中识别出一系列物理参数,以将预处理的输入层构建到我们自己的多层神经网络(NN)体系结构中以进行预测分析。从文献中提取的测量数据然后用于训练和验证NN模型。对于经过优化的一组超参数,经过训练的模型在模型的预测与各个测量值之间产生20%的平均误差偏差。然后,我们将定量讨论如何可以遵循该模型来预测相关ARRS在一系列运行条件下达到突破阶段的时机。最后,我们还演示了如何用均质表示法确定任意过滤器的临界反应速率和导致其突破阶段的扩散系数。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号