首页> 外文期刊>Journal of computational science >Feature engineering using homogenization theory with multiscale perturbation analysis for supervised model-based learning of physical clogging condition in seepage filters
【24h】

Feature engineering using homogenization theory with multiscale perturbation analysis for supervised model-based learning of physical clogging condition in seepage filters

机译:采用均质化理论与多尺度扰动分析进行胎化模型学习渗流滤波器

获取原文
获取原文并翻译 | 示例
       

摘要

Aquifer recharge and recovery systems (ARRS), which can broadly be analysed as seepage depth filters, in natural or engineered aquifers are gaining attention worldwide. Engineering predictions of their complex physical clogging behavior, however, continue to be challenging which has hindered the predictive maintenance of these systems for energy and materials savings. To address this problem statement, we leverage the homogenization theory with the multiscale perturbation analysis as the feature engineering step to reduce the complexity of the physical clogging behavior in ARRS. The analytical approach systematically derives a unique homogenized representation which quantifies the clogging condition at the macroscale. A series of physical parameters are identified from the derived homogenized representation to build a pre-processed input layer into our own multi-layered neural network (NN) architecture for predictive analysis. Measured data extracted from the literature is then used to train and verify the NN model. The trained model yields an average error deviation of 20% between the model's predictions and the respective measurements for an optimized set of hyperparameters tested. We then discuss quantitatively how the model can be adhered to predict the timing for a concerned ARRS to reach its breakthrough stage for a range of operational conditions. Finally, we also demonstrate how the homogenized representation can be useful to determine an arbitrary filter's critical reaction rate and diffusion coefficient responsible for its breakthrough stage. (C) 2019 Elsevier B.V. All rights reserved.
机译:在天然或工程含水层中,可以广泛地分析为渗流深度过滤器的含水层充值和恢复系统(ARRS)正在全球范围内获得关注。然而,他们复杂的物理堵塞行为的工程预测仍然存在挑战,这阻碍了这些系统节省了这些系统的预测维护。为了解决此问题陈述,我们利用多尺度扰动分析利用均匀化理论作为特征工程步骤,以降低ARRS中物理堵塞行为的复杂性。分析方法系统地得出独特的均质表示,其量化宏观堵塞条件。从导出的均质表示识别出一系列物理参数,以将预处理的输入层构建到我们自己的多层神经网络(NN)架构中以进行预测分析。然后使用从文献中提取的测量数据来训练并验证NN模型。训练的模型在模型的预测和测试的优化超参数集合的各个测量之间产生了20%的平均误差偏差。然后,我们定量讨论模型如何遵守模型以预测有关ARR的时间,以实现一系列操作条件的突破性阶段。最后,我们还展示了均质化表示如何有用,以确定任意过滤器的临界反应速率和对其突破性阶段的临界反应速率和扩散系数。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号