首页> 外文期刊>Journal of computational science >A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems
【24h】

A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems

机译:混合灰狼优化器和人工蜂群算法,用于增强复杂系统的性能

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel hybrid algorithm based on grey wolf optimizer (GWO) and artificial bee colony (ABC) algorithm called GWO-ABC is proposed to inherit their advantages and overcome their drawbacks. In GWO-ABC algorithm, wolves adopt the information sharing strategy of bees to promote their exploration ability while wolves keep their original hunting strategy to retain exploitation ability. Moreover, a new method based on chaotic mapping and opposition based learning is proposed to initialize the population. The aim for this new initialization method is to generate an initial population with already better individuals to set a solid ground for rest of the GWO-ABC algorithm to execute. The sole motivation behind incorporating changes in GWO is to help the algorithm to evade premature convergence and to steer the search towards the potential search region in faster manner. To assess the performance of the GWO-ABC, it is tested on a test bed of 27 synthesis benchmark functions of different properties; and result are compared with 5 other efficient algorithms. From the analysis of the numerical results, it is apparent that the projected changes in the GWO ameliorate its overall performance and efficacy especially while dealing with noisy (problem with many sub-optima) problems. Furthermore, GWO-ABC is applied to design an optimal fractional order PID (FOPID) controllers for variety of typical benchmark complex transfer functions and trajectory tracking problem of 2 degree-of-freedom (DOF) robotic manipulator. All simulation results, illustrations, and comparative analysis establish the GWO-ABC as viable alternative to design a controller with optimal parameters and enhance the performance of complex systems.
机译:本文提出了一种基于灰狼优化器(GWO)和人工蜂群(ABC)算法的混合算法GWO-ABC,以继承它们的优点并克服它们的缺点。在GWO-ABC算法中,狼采用蜜蜂的信息共享策略来提高其探索能力,而狼则保留其原始的狩猎策略以保留其开发能力。此外,提出了一种基于混沌映射和基于对立学习的新方法来初始化种群。这种新的初始化方法的目的是生成一个已经具有更好个体的初始种群,从而为其余的GWO-ABC算法的执行奠定坚实的基础。将变化合并到GWO中的唯一动机是帮助算法避免过早收敛,并以更快的方式将搜索引导到潜在的搜索区域。为了评估GWO-ABC的性能,它在27个具有不同特性的综合基准功能的测试床上进行了测试。并将结果与​​其他5种有效算法进行比较。通过对数值结果的分析,可以明显看出,GWO的预计更改可以改善其总体性能和功效,尤其是在处理嘈杂(许多次优问题)时。此外,GWO-ABC用于设计最佳分数阶PID(FOPID)控制器,用于各种典型基准复数传递函数和2自由度(DOF)机器人操纵器的轨迹跟踪问题。所有的仿真结果,说明和比较分析都将GWO-ABC确立为设计具有最佳参数的控制器并增强复杂系统性能的可行选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号