首页> 外文期刊>Journal of Computational Physics >High-Order accurate discontinuous finite element solution of the 2D Euler equations
【24h】

High-Order accurate discontinuous finite element solution of the 2D Euler equations

机译:二维Euler方程的高阶精确不连续有限元解

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with a high-order accurate discontinuous finite element method for the numerical solution of the Euler equations. The method com- bines two key ideas which are at the basis of the finite volume and of the finite element method, the physics of wave propagation being accounted for by means of Riemann problems and accuracy being obtained by means of high-order polynomial approximations within elements. We focus our atten- tion on two-dimensional steady-state problems and present higher order accu- rate (up to fourth-order) discontinuous finite element solutions on unstruc- tured girds of triangles.
机译:本文针对Euler方程的数值解提出了一种高阶精确不连续有限元方法。该方法结合了以有限体积和有限元法为基础的两个关键思想,波传播的物理原理是通过黎曼(Riemann)问题解决的,而精度是通过内部的高阶多项式逼近来实现的。元素。我们将注意力集中在二维稳态问题上,并在未结构的三角形网格上给出更高阶的精度(最高四阶)不连续有限元解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号