首页> 外文期刊>Journal of Computational Physics >A high-Order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations
【24h】

A high-Order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations

机译:可压缩纳维斯托克斯方程数值解的高阶精确不连续有限元方法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with a high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. We extend a discontinuous finite element Discretization originally considered for hyperbolic systems such as The Euler equations to the case of the Navier-Stokes equations by Treating the viscous terms with a mixed formulation. The method Combines two d ideas which re at the basis of the finite volume And of the finite element method, the physics of wave propagation Being accounted for by means of Riemann problems and accuracy Being obtained by means of high-order polynomial; approximations Within elements.
机译:本文针对可压缩的Navier-Stokes方程的数值解提出了一种高阶精确的间断有限元方法。通过使用混合公式处理粘性项,我们将原本用于双曲线系统(如Euler方程)的非连续有限元离散化扩展到Navier-Stokes方程的情况。该方法结合了以有限体积和有限元法为基础的两个d观念,利用里曼问题解释了波的传播物理,利用高阶多项式获得了精度。元素内的近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号