首页> 外文OA文献 >A high-order, adaptive, discontinuous Galerkin finite element method for the Reynolds-Averaged Navier-Stokes equations
【2h】

A high-order, adaptive, discontinuous Galerkin finite element method for the Reynolds-Averaged Navier-Stokes equations

机译:Reynolds-averaged Navier-stokes方程的高阶自适应不连续Galerkin有限元方法

摘要

This thesis presents high-order, discontinuous Galerkin (DG) discretizations of the Reynolds-Averaged Navier-Stokes (RANS) equations and an output-based error estimation and mesh adaptation algorithm for these discretizations. In particular, DG discretizations of the RANS equations with the Spalart-Allmaras (SA) turbulence model are examined. The dual consistency of multiple DG discretizations of the RANS-SA system is analyzed. The approach of simply weighting gradient dependent source terms by a test function and integrating is shown to be dual inconsistent. A dual consistency correction for this discretization is derived. The analysis also demonstrates that discretizations based on the popular mixed formulation, where dependence on the state gradient is handled by introducing additional state variables, are generally asymptotically dual consistent. Numerical results are presented to confirm the results of the analysis. The output error estimation and output-based adaptation algorithms used here are extensions of methods previously developed in the finite volume and finite element communities. In particular, the methods are extended for application on the curved, highly anisotropic meshes required for boundary conforming, high-order RANS simulations. Two methods for generating such curved meshes are demonstrated. One relies on a user-defined global mapping of the physical domain to a straight meshing domain. The other uses a linear elasticity node movement scheme to add curvature to an initially linear mesh. Finally, to improve the robustness of the adaptation process, an "unsteady" algorithm, where the mesh is adapted at each time step, is presented. The goal of the unsteady procedure is to allow mesh adaptation prior to converging a steady state solution, not to obtain a time-accurate solution of an unsteady problem. Thus, an estimate of the error due to spatial discretization in the output of interest averaged over the current time step is developed. This error estimate is then used to drive an h-adaptation algorithm. Adaptation results demonstrate that the high-order discretizations are more efficient than the second-order method in terms of degrees of freedom required to achieve a desired error tolerance. Furthermore, using the unsteady adaptation process, adaptive RANS simulations may be started from extremely coarse meshes, significantly decreasing the mesh generation burden to the user.
机译:本文提出了雷诺平均Navier-Stokes(RANS)方程的高阶,不连续Galerkin(DG)离散化以及这些离散化的基于输出的误差估计和网格自适应算法。特别是,研究了用Spalart-Allmaras(SA)湍流模型对RANS方程进行DG离散化。分析了RANS-SA系统的多个DG离散化的双重一致性。通过测试函数简单加权与梯度相关的源项并进行积分的方法被证明是双重不一致的。导出了针对该离散化的双重一致性校正。分析还表明,基于流行的混合公式的离散化通常是渐近对偶一致的,在离散化中,通过引入其他状态变量来处理对状态梯度的依赖。给出数值结果以确认分析结果。此处使用的输出误差估计和基于输出的自适应算法是先前在有限体积和有限元社区中开发的方法的扩展。尤其是,这些方法已扩展为可应用于边界符合性高阶RANS模拟所需的弯曲,高度各向异性的网格。演示了两种生成此类弯曲网格的方法。一个依赖于用户定义的物理域到直线网格域的全局映射。另一个使用线性弹性节点移动方案将曲率添加到初始线性网格。最后,为了提高自适应过程的鲁棒性,提出了一种“不稳定”算法,其中在每个时间步长都对网格进行了自适应。非稳态过程的目标是在收敛稳态解之前允许网格自适应,而不是获得非稳态问题的时间精确解。因此,对由于在当前时间步中平均得到的感兴趣的输出中的空间离散而引起的误差的估计得到了发展。然后,该误差估计用于驱动h自适应算法。适应结果表明,就实现期望的误差容限所需的自由度而言,高阶离散化比二阶方法更有效。此外,使用不稳定的自适应过程,可以从极其粗糙的网格开始自适应RANS仿真,从而大大减轻了用户的网格生成负担。

著录项

  • 作者

    Oliver Todd A. 1980-;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号