首页> 外文期刊>Journal of Computational Neuroscience >Causal pattern recovery from neural spike train data using the Snap Shot Score
【24h】

Causal pattern recovery from neural spike train data using the Snap Shot Score

机译:使用快照分数从神经峰值训练数据中恢复因果关系

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach to learning directed information flow networks from multi-channel spike train data. A novel scoring function, the Snap Shot Score, is used to assess potential networks with respect to their quality of causal explanation for the data. Additionally, we suggest a generic concept of plausibility in order to assess network learning techniques under partial observability conditions. Examples demonstrate the assessment of networks with the Snap Shot Score, and neural network simulations show its performance in complex situations with partial observability. We discuss the application of the new score to real data and indicate how it can be modified to suit other neural data types.
机译:我们提出了一种新的方法,用于从多通道峰值列车数据中学习定向信息流网络。一种新颖的计分功能,即快照得分,用于根据数据的因果解释质量来评估潜在网络。另外,我们建议合理性的通用概念,以便在部分可观察性条件下评估网络学习技术。实例演示了使用快照分数评估网络的情况,神经网络仿真显示了在复杂情况下具有部分可观察性的性能。我们讨论了新分数在实际数据中的应用,并指出了如何对其进行修改以适合其他神经数据类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号