首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Data mining and social networks processing method based on support vector machine and k-nearest neighbor
【24h】

Data mining and social networks processing method based on support vector machine and k-nearest neighbor

机译:基于支持向量机和K最近邻的数据挖掘和社交网络处理方法

获取原文
获取原文并翻译 | 示例

摘要

OBJECTIVE: With Sina Weibo data as the background, support vector machine (SVM) and k-nearest neighbor (KNN) method are used to predict and analyze the user's micro-blog emotion and related behavior in social network, hoping to obtain rich potential business value.METHODS: First, the API interface of Sina Weibo is utilized to obtain the information of users in Sina Weibo; then, the Excel software is utilized to sort and analyze the extracted data to extract the features of micro-blogs posted by users. Second, SVM and KNN algorithms are utilized to calculate the weighted average and propose a hybrid multi-classifier-based Mixed Classifier Emotion Prediction Model (MCEPM). Finally, through the evaluation criteria, including precision (P), recall rate (R), and harmonic average (F1), the specific experimental results of SVM and KNN weight coefficients are compared with the prediction results of MCEPM.RESULTS: The prediction effect of MCEPM is associated with the weight coefficients of SVM and KNN. If the weight coefficients of SVM and KNN are 0.6 and 0.4, the prediction effect of MCEPM will be optimal. Comprehensive analysis shows that the MCEPM model can balance the prediction results of the positive and negative samples of the two classifiers.CONCLUSION: MCEPM model is superior to other algorithms in micro-blog emotion prediction, which can help enterprises analyze users' product inclination and provide accurate customer service requirements for enterprises.
机译:目的:利用新浪微博数据作为背景,支持向量机(SVM)和K最近邻(KNN)方法用于预测和分析社交网络中的用户的微博情绪和相关行为,希望获得丰富的潜在业务2.首先,利用新浪微博的API接口获取新浪微博的用户信息;然后,利用Excel软件对提取的数据进行排序和分析,以提取用户发布的微博的功能。其次,SVM和KNN算法用于计算加权平均值并提出混合多分类器的混合分类器情绪预测模型(MCEPM)。最后,通过评估标准,包括精度(P),召回率(R)和谐波平均(F1),将SVM和KNN重量系数的特定实验结果与MCEPM的预测结果进行比较。结果:预测效果MCEPM与SVM和KNN的重量系数相关联。如果SVM和KNN的重量系数为0.6和0.4,则MCEPM的预测效果将是最佳的。综合分析表明,MCEPM模型可以平衡两分类器的正面和负样本的预测结果。结论:MCEPM模型优于微博情绪预测中的其他算法,可以帮助企业分析用户的产品倾向和提供精确的企业客户服务要求。

著录项

  • 来源
  • 作者单位

    Hunan Inst Sci & Technol Sch Informat & Commun Engn Yueyang 414006 Hunan Peoples R China;

    Hunan Inst Sci & Technol Nanhu Coll Yueyang 414006 Hunan Peoples R China;

    Hunan Inst Sci & Technol Sch Informat & Commun Engn Yueyang 414006 Hunan Peoples R China;

    Hunan Inst Sci & Technol Sch Informat & Commun Engn Yueyang 414006 Hunan Peoples R China;

    Hunan Inst Sci & Technol Sch Informat & Commun Engn Yueyang 414006 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social network; SVM; KNN; MCEPM; Sina Weibo;

    机译:社交网络;SVM;KNN;MCEPM;新浪微博;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号