首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Application of Multi-Column Heterogeneous Convolutional Neural Networks in image classification
【24h】

Application of Multi-Column Heterogeneous Convolutional Neural Networks in image classification

机译:多柱异构卷积神经网络在图像分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Image classification is an important research direction of computer vision. Convolutional neural network is a deep feedforward neural network model. It uses the deep learning idea and shows good performance in multiple image classification fields such as speech recognition, face recognition, motion analysis, and medical diagnosis. However, a single-structure convo-lutional neural network is prone to overfitting problems. The main reason for the overfitting problem is that the learning model overfits the training set and results in the lack of generalization performance, which affects the feature extraction and judgment of the test set. This paper presents a structure model for Multi-Column Heterogeneous Convolutional Neural Networks. Multi-Column Heterogeneous Convolutional Neural Networks are used in image classification. We construct several convolutional neural networks with different structures by setting different size of convolution kernels and different number of feature maps. Image features are learned from multiple perspectives. Each convolutional neural network model is trained on the training set, and the different network models are fitted to the training set. Finally, through the sliding window, the output of each network is fused to obtain a relatively better prediction result. Experiments show that Multi-Column Heterogeneous Convolutional Neural Networks reduce the overfitting problem to a certain extent, and the accuracy of object recognition is improved compared to the single structure convolutional neural network.
机译:图像分类是计算机视觉的重要研究方向。卷积神经网络是深度前馈神经网络模型。它使用深度学习的理念,并在语音识别,面部识别,运动分析和医学诊断等多个图像分类领域中显示出良好的性能。然而,单结构追溯神经网络易于过度拟合问题。过度处理问题的主要原因是学习模型过度培训集,导致缺乏泛化性能,这会影响测试集的特征提取和判断。本文介绍了多列异构卷积神经网络的结构模型。多列异构卷积神经网络用于图像分类。通过设置不同大小的卷积内核和不同数量的特征映射,我们构造具有不同结构的多个卷积神经网络。从多个透视图中汲取图像功能。每个卷积神经网络模型在训练集上培训,不同的网络模型适用于训练集。最后,通过滑动窗口,每个网络的输出被融合以获得相对更好的预测结果。实验表明,多柱异构卷积神经网络在一定程度上降低了过度的问题,与单结构卷积神经网络相比,对象识别的准确性得到改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号