首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Joint graph regularized extreme learning machine for multi-label image classification
【24h】

Joint graph regularized extreme learning machine for multi-label image classification

机译:用于多标签图像分类的联合图正规化极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Extreme learning machine (ELM) has been proved to be an efficient and effective machine learning method for pattern classification and regression. However, ELM is mainly applied to traditional supervised learning problems. KLM is not commonly used in multi-label image classification. In this paper, we propose a joint graph regularized extreme learning machine (JGELM) by simultaneously considering the feature information and label correlation of data. Specifically, we exploit the feature distance and label correlation in the local neighborhood. To this end, a joint graph regularizer based on a newly designed graph Laplacian to characterize both properties is formulated and incorporated into the ELM objective. Four popular multi-label image data sets are employed to test the proposed method. The experimental results show that JGELM are competitive with state-of-the-art multi-label classification algorithms in terms of accuracy and efficiency.
机译:Extreme Learning Machine(ELM)已被证明是用于模式分类和回归的高效有效的机器学习方法。然而,ELM主要应用于传统的监督学习问题。 KLM不常用于多标签图像分类。在本文中,我们通过同时考虑特征信息和标签相关性,提出了联合图正规化的极限学习机(JGELM)。具体而言,我们利用本地邻域中的特征距离和标签相关性。为此,基于新设计的图拉普拉斯的联合图规范器用于表征两个属性的表征并结合到ELM目标中。使用四个流行的多标签图像数据集来测试所提出的方法。实验结果表明,在准确性和效率方面,JGELM对最先进的多标签分类算法具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号