首页> 外文期刊>Journal of Computational Mathematics >A HIGH ORDER ADAPTIVE FINITE ELEMENT METHOD FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS
【24h】

A HIGH ORDER ADAPTIVE FINITE ELEMENT METHOD FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS

机译:解非线性双曲守恒律的高阶自适应有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this note, we apply the h-adaptive streamline diffusion finite element method with a small mesh-dependent artificial viscosity to solve nonlinear hyperbolic partial differential equations, with the objective of achieving high order accuracy and mesh efficiency. We compute the numerical solution to a steady state Burgers equation and the solution to a converging-diverging nozzle problem. The computational results verify that, by suitably choosing the artificial viscosity coefficient and applying the adaptive strategy based on a posterior error estimate by Johnson et al., an order of N~3/2 accuracy can be obtained when continuous piecewise linear elements are used, where N is the number of elements.
机译:在本文中,我们采用具有较小网格依赖人工粘度的h自适应流线扩散有限元方法来求解非线性双曲型偏微分方程,目的是实现高阶精度和网格效率。我们计算了稳态Burgers方程的数值解和收敛-发散喷嘴问题的解。计算结果证明,通过适当地选择人工粘度系数并基于Johnson等人的后验误差估计应用自适应策略,当使用连续分段线性元素时,可以获得N〜3/2的精度,其中N是元素数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号