首页> 外文期刊>Journal of Computational and Graphical Statistics >Determining and Depicting Relationships Among Components in High-Dimensional Variable Selection
【24h】

Determining and Depicting Relationships Among Components in High-Dimensional Variable Selection

机译:确定和描述高维变量选择中组件之间的关系

获取原文
获取原文并翻译 | 示例

摘要

Many modern treatments of high-dimensional datasets involve reducing the initial collection of features to a much smaller set, from which a predictive model may be built. However, strong relationships between the remaining variables can limit the parsimony or even the predictive performance of such a model. We propose a semi-automatic approach using generalized correlation to detect and quantify these relationships, as well as exploring ways to represent this information graphically. The method can detect both symmetric and asymmetric relationships, as well as nonlinear patterns. Its utility is demonstrated on a range of real and simulated datasets. Supplemental material for performing the real-data analyses in this article is available online.
机译:高维数据集的许多现代处理方法都涉及将要素的初始集合减少到更小的集合,从而可以从中构建预测模型。但是,其余变量之间的强关系可能会限制此类模型的简约性甚至预测性能。我们提出了一种使用广义相关来检测和量化这些关系的半自动方法,并探索了以图形方式表示此信息的方法。该方法可以检测对称和非对称关系以及非线性模式。在一系列真实和模拟数据集上展示了其实用性。可在网上在线获取用于执行实际数据分析的补充材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号