首页> 外文期刊>Journal of Computational Electronics >Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions
【24h】

Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions

机译:以方形碳化硅膜片为主要传感元件的MEMS压阻式压力传感器的分析建模和仿真

获取原文
获取原文并翻译 | 示例

摘要

Although silicon is the preferred choice for microelectromechanical systems (MEMS) piezoresistive pressure sensors, such devices are not preferred for application in harsh environmental conditions due to the exponential increase in leakage current with temperature. To alleviate such shortcomings of silicon-based pressure sensors in extreme conditions including elevated temperature and intense vibration, this study strives to shift focus from core complementary metal–oxide–semiconductor (CMOS) materials to silicon carbide. In this work, we adopt an analytical and simulation approach to model and analyze various characteristics of such silicon carbide piezoresistive sensors and determine an optimal design. A square diaphragm is modeled using the analytical expressions for a thin plate in combination with small-deflection theory, providing quick insight for estimation of critical parameters and thus the behavior of the pressure sensor. Both clamped and freely supported edge conditions of the diaphragm are explored. Although many studies and discussions are available on the rigidly supported loading condition, the freely supported edge condition for a square diaphragm has received little attention. The deflection, stress, strain, and sensitivity of the square diaphragm under both loading conditions are reported herein then compared to understand which of the two loading conditions results in more significant outputs.
机译:尽管硅是微机电系统(MEMS)压阻式压力传感器的首选,但由于泄漏电流随温度呈指数级增长,因此此类器件在恶劣的环境条件下不是首选。为了缓解极端条件下基于硅的压力传感器的此类缺点,包括高温和强烈振动,本研究致力于将重点从核心互补金属氧化物半导体(CMOS)材料转移到碳化硅。在这项工作中,我们采用一种分析和模拟方法来对这种碳化硅压阻传感器的各种特性进行建模和分析,并确定最佳设计。结合小挠度理论,使用薄板的解析表达式对方形膜片进行建模,从而可以快速了解关键参数的估计以及压力传感器的性能。研究了膜片的夹紧和自由支撑的边缘条件。尽管可以对刚性支撑的载荷条件进行许多研究和讨论,但方形膜片的自由支撑边缘条件却很少受到关注。然后在此报告在两个加载条件下方形膜片的挠度,应力,应变和灵敏度,然后进行比较,以了解两个加载条件中的哪一个会产生更大的输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号