首页> 外文学位 >Characterization and fabrication of alpha(6 hydrogen)-silicon carbide as a piezoresistive pressure sensor for high temperature applications.
【24h】

Characterization and fabrication of alpha(6 hydrogen)-silicon carbide as a piezoresistive pressure sensor for high temperature applications.

机译:α(6氢)-碳化硅作为高温应用的压阻压力传感器的特性和制造。

获取原文
获取原文并翻译 | 示例

摘要

A prototype monolithic 6H-SiC pressure sensor operational up to 350{dollar}spcirc{dollar}C, with potential to operate up to 600{dollar}spcirc{dollar}C, was batch fabricated and tested. At temperatures higher than 450{dollar}spcirc{dollar}C, silicon diaphragms creep under minimal load. To operate beyond 450{dollar}spcirc{dollar}C, therefore, the use of 6H-SiC was proposed. However, three key technological issues--fabrication, high temperature metallization, and gage factor characterization--had to be resolved. Since conventional fabrication technology is not applicable to SiC due to its near inert chemistry, photoconductive selectivity techniques to etch the piezoresistors were developed. Techniques to wet etch the cavities in a dark current mode were developed resulting in 25{dollar}mu{dollar}m diaphragms free of etch-pits and hillocks. Average etch-rates between 0.6 and 0.8 {dollar}mu{dollar}m/min. were achieved. Ti/TiN/Pt and Ti/TaSi{dollar}sb2{dollar}/Pt metallization that maintained stable contact resistivity on n-type 6H-SiC epilayers after more than twenty hours of heat treatment at 600{dollar}spcirc{dollar}C in air were also demonstrated. The characterization research revealed that the longitudinal and transverse gage factors were {dollar}-{dollar}22 and 19, respectively, at room temperature. The gage factors increased in absolute terms with temperature, and then assumed constant values of 11 and 9, respectively, above 400{dollar}spcirc{dollar}C. Experimental test results demonstrated for the first time that 6H-SiC pressure sensors capable of operating up to 600{dollar}spcirc{dollar}C can be fabricated and manufactured.
机译:批量制造并测试了原型单片6H-SiC压力传感器,该传感器可在最高350℃的温度下工作,并有可能在最高600℃的温度下工作。在高于450℃的温度下,硅膜片在最小载荷下蠕变。因此,为了在超过450℃的温度下工作,建议使用6H-SiC。但是,必须解决三个关键技术问题:制造,高温金属化和应变系数表征。由于常规制造技术由于其接近惰性的化学性质而不适用于SiC,因此开发了用于蚀刻压敏电阻的光电导选择性技术。开发了在暗电流模式下湿蚀腔体的技术,从而形成了25 {的隔膜,没有腐蚀坑和小丘。平均蚀刻速率在0.6至0.8 {μm}μm/ min之间。实现了。 Ti / TiN / Pt和Ti / TaSi {dollar} sb2 {dollar} / Pt金属化层在600 {spcirc {dollar} C热处理20小时后,在n型6H-SiC外延层上保持稳定的接触电阻率在空中也进行了演示。表征研究表明,室温下的纵向和横向应变系数分别为{dollar}-{dollar} 22和19。应变系数随着温度的升高而绝对增加,然后在400℃以上时分别取11和9的恒定值。实验测试结果首次证明,可以制造和制造能够工作至600 {spC的6H-SiC压力传感器。

著录项

  • 作者

    Okojie, Robert Sylvester.;

  • 作者单位

    New Jersey Institute of Technology.;

  • 授予单位 New Jersey Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:49:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号