首页> 外文期刊>Journal of circuits, systems and computers >In-Network Distributed Least-Mean-Square Identification of Nonlinear Systems Using Volterra-Laguerre Model
【24h】

In-Network Distributed Least-Mean-Square Identification of Nonlinear Systems Using Volterra-Laguerre Model

机译:使用Volterra-Laguerre模型的网络内分布的非线性系统的分布最小平均方形识别

获取原文
获取原文并翻译 | 示例

摘要

It is of great importance to model the behavior of nonlinear systems in a distributed fashion using wireless sensor networks (WSNs) because of its computation and energy-efficient data processing. However, least squares methods have been previously employed to estimate the parameters of Volterra model for modeling nonlinear systems. Still, it is more convenient and advantageous to use in-network distributed identification strategy for real-time modeling and control. In this context, a black-box model with generalized structure and remarkable modeling ability called Volterra-Laguerre model is considered in which distributed signal processing is employed to identify the nonlinear systems in a distributed manner. The model cost function is expressed as a separable constrained minimization problem which is decomposed into augmented Lagrangian form to facilitate the distributed optimization. Then, alternating direction method of multipliers is employed to estimate the optimal parameters of the model. Convergence of the algorithm is guaranteed by providing its mean stability analysis. Simulation results for a nonlinear system are obtained under the noisy environment. These results are plotted against the results of noncooperative and centralized methods, demonstrating the effectiveness and superior performance of the proposed algorithm.
机译:利用无线传感器网络(WSNS)模拟分布式时尚的非线性系统的行为是非常重要的,因为它的计算和节能数据处理。然而,先前已经采用最小二乘方法来估计用于建模非线性系统的Volterra模型的参数。尽管如此,使用网络分布式识别策略进行实时建模和控制更方便和有利。在这种情况下,考虑了一种具有广义结构和称为Volterra-Laguerre模型的广义结构和显着建模能力的黑匣子模型,其中采用分布式信号处理来以分布式方式识别非线性系统。模型成本函数表示为可分离约束的最小化问题,该问题被分解为增强拉格朗日形式,以便于分布式优化。然后,采用乘法器的交替方向方法来估计模型的最佳参数。通过提供其平均稳定性分析,可以保证算法的收敛。在嘈杂的环境下获得非线性系统的仿真结果。这些结果绘制了非兴奋和集中方法的结果,展示了所提出的算法的有效性和优异的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号