首页> 外文期刊>Journal of building performance simulation >Real-time model for unit-level heating and cooling energy prediction in multi-family residential housing
【24h】

Real-time model for unit-level heating and cooling energy prediction in multi-family residential housing

机译:多家庭住宅单元级加热和冷却能量预测的实时模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a real-time modelling approach to predict the heating and cooling energy consumption of each housing unit in multi-family residential buildings. We first present measured yearly heating and cooling energy use data from an actual building and introduce the eco-feedback design and associated modelling challenges. Subsequently, we present a real-time parameter learning-based modelling approach. The model has a state-space structure while state filtering and parameter estimation are simultaneously executed through particle filter with sequential Bayesian update. The housing unit-level model is coupled with a probabilistic model of the heating and cooling system by using thermostat, power metre, and mechanical system catalogue data through a Bayesian approach. The results show that the median power prediction of the model deviates less than 3.1% from measurements while the model learns seasonal parameters such as the cooling efficiency coefficient through sequential Bayesian update.
机译:在本文中,我们介绍了一种实时建模方法,以预测多家庭住宅建筑中每个壳体单元的加热和冷却能耗。我们首先展示测量的年度加热和冷却能源使用实际建筑物的数据,并引入生态反馈设计和相关的建模挑战。随后,我们提出了一种基于实时参数学习的建模方法。该模型具有状态空间结构,同时通过具有顺序贝叶斯更新的粒子滤波器同时执行状态滤波和参数估计。通过使用贝叶斯方法使用恒温器,功率计和机械系统目录数据,壳体单元级模型与加热和冷却系统的概率模型相结合。结果表明,该模型的中值电力预测偏离测量的3.1%,而模型通过顺序贝叶斯更新学习季节性参数,例如冷却效率系数。

著录项

  • 来源
    《Journal of building performance simulation》 |2021年第4期|420-445|共26页
  • 作者单位

    Purdue Univ Sch Civil Engn W Lafayette IN 47907 USA|Purdue Univ Ray W Herrick Labs Ctr High Performance Bldg W Lafayette IN 47907 USA;

    Purdue Univ Sch Civil Engn W Lafayette IN 47907 USA|Purdue Univ Ray W Herrick Labs Ctr High Performance Bldg W Lafayette IN 47907 USA;

    Purdue Univ Ray W Herrick Labs Ctr High Performance Bldg W Lafayette IN 47907 USA|Purdue Univ Sch Mech Engn W Lafayette IN 47907 USA;

    Purdue Univ Ray W Herrick Labs Ctr High Performance Bldg W Lafayette IN 47907 USA|Purdue Univ Sch Mech Engn W Lafayette IN 47907 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Building energy model; eco-feedback; occupant behaviour; real-time model; particle filter;

    机译:建筑能量模型;生态反馈;占用行为;实时模型;粒子过滤器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号