首页> 外文期刊>Journal of Applied Physics >Electronic structure spectroscopy of organic semiconductors by energy resolved-electrochemical impedance spectroscopy (ER-EIS)
【24h】

Electronic structure spectroscopy of organic semiconductors by energy resolved-electrochemical impedance spectroscopy (ER-EIS)

机译:通过能量分离电化学阻抗光谱(ER-EIS)的有机半导体的电子结构光谱

获取原文
获取原文并翻译 | 示例

摘要

Organic electronic applications are envisioned to address broad markets, which includes flexible displays, electronic papers, sensors, disposable and wearable electronics, and medical and biophysical applications, leading to a tremendous amount of interest from both academia and industry in the study of devices. These fields of science and technology constitute interdisciplinary fields that cover physics, chemistry, biology, and materials science, leading, as a wanted output, to the elucidation of physical and chemical properties, as well as structures, fabrication, and performance evaluation of devices and the creation of new knowledge underlying the operation of organic devices using new synthesized organic materials-organic semiconductors. We testify the situation when the available organic electronic applications sometimes lack a theoretical background. The cause may be the complicated properties of disordered, weak bounded, molecular materials with properties different from their inorganic counterparts. One of the basic information-rich resources is the electronic structure of organic semiconductors, elucidated by the methods, hardly possible to be transferred from the branch of inorganic semiconductors. Electrochemical spectroscopic methods, in general, and electrochemical impedance spectroscopy, in particular, tend and seem to fill this gap. In this Perspective article, the energy resolved-electrochemical impedance spectroscopic method for electronic structure studies of surface and bulk of organic semiconductors is presented, and its theoretical and implementation background is highlighted. To show the method's properties and strength, both as to the wide energy and excessive dynamic range, the basic measurements on polymeric materials and D-A blends are introduced, and to highlight its broad applicability, the results on polysilanes degradability, gap engineering of non-fullerene D-A blends, and electron structure spectroscopy of an inorganic nanocrystalline film are highlighted. In the outlook and perspective, the electrolyte/ polymer interface will be studied in general and specifically devoted to the morphological, transport, and recombination properties of organic semiconductors and biophysical materials.
机译:有机电子应用程序设想解决广泛的市场,包括灵活的显示器,电子纸,传感器,一次性和可穿戴电子产品,以及医疗和生物物理应用,导致学术界和工业在研究设备中的巨大感兴趣。这些科技领域构成了跨学科领域,涵盖物理,化学,生物学和材料科学,作为想要的输出,阐明物理和化学性质,以及结构的结构,制造和性能评估使用新的合成有机材料 - 有机半导体创建有机器件运行的新知识。我们证明了可用的有机电子应用有时缺乏理论背景的情况。原因可能是无序,弱界,分子材料的复杂性质,其特性与其无机对应物不同。富基本信息丰富的资源之一是有机半导体的电子结构,通过该方法阐明,几乎可以从无机半导体的分支转移。特别是电化学光谱法,特别是电化学阻抗光谱,尤其倾向于填充这种间隙。在该透视制品中,提出了用于表面和大量有机半导体的电子结构研究的能量分辨电化学阻抗光谱法,其理论和实施背景被突出显示。为了展示该方法的性质和强度,随着宽的能量和过度动态范围,介绍了聚合物材料和DA混合物的基本测量,并突出了其广泛的适用性,结果对聚硅烷可降解性,非富勒烯的差距工程突出了无机纳米晶体膜的DA混合物和电子结构光谱。在展望和观点中,电解质/聚合物界面将一般研究,并专门致力于有机半导体和生物物理材料的形态学,运输和重组性能。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第15期|150902.1-150902.11|共11页
  • 作者

    Franz Schauer;

  • 作者单位

    Faculty of Applied Informatics Tomas Bata University in Zlin 760 05 Zlin Czech Republic;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号