首页> 外文期刊>Journal of Applied Physics >Determining the orientation of the flexural modes of a thermally driven microwire cantilever
【24h】

Determining the orientation of the flexural modes of a thermally driven microwire cantilever

机译:确定热驱动微线悬臂的弯曲模式的方向

获取原文
获取原文并翻译 | 示例

摘要

Mechanical resonators are excellent transducers for ultrasensitive detection applications. Recent advances such as vectorial force sensing and ultrahigh-resolution mass spectra rely on the identification of two flexural vibrational modes of a resonator. The orientations of the flexural modes with respect to the incident optical axis are crucial parameters for a cantilevered resonator. Previous methods have adopted complex experimental setups using quadrant photodetectors or have required simultaneous detection of two flexural modes of the cantilever. In this paper, we propose a method for determination of the orientations of the flexural vibrations of a cantilever using a microlens optical fiber interferometer that takes both the light interference and the lateral light scattering of the cantilever into account. We demonstrated the method by experimentally determining the orientation of the first three flexural vibrational modes of a thermally driven microwire. Our method can be used to characterize individual flexural modes with arbitrary orientations and thus provides a new tool for detecting vectorial forces. Published under license by AIP Publishing.
机译:机械谐振器是用于超灵敏检测应用的出色换能器。矢量力感测和超高分辨率质谱等最新进展依赖于谐振器的两种弯曲振动模式的识别。弯曲模式相对于入射光轴的方向是悬臂谐振器的关键参数。先前的方法已经采用了使用象限光电探测器的复杂实验设置,或者需要同时检测悬臂的两种弯曲模式。在本文中,我们提出了一种使用微透镜光纤干涉仪确定悬臂弯曲振动方向的方法,该方法同时考虑了悬臂的光干扰和横向光散射。我们通过实验确定热驱动微丝的前三个挠曲振动模式的方向来演示该方法。我们的方法可用于表征具有任意方向的各个弯曲模式,从而为检测矢量力提供了一种新工具。由AIP Publishing授权发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第15期|154302.1-154302.7|共7页
  • 作者单位

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Field Magnet Lab, Hefei 230031, Anhui, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号