...
首页> 外文期刊>Journal of Applied Physics >Thermal phonons and defects in semiconductors: The physical reason why defects reduce heat flow, and how to control it
【24h】

Thermal phonons and defects in semiconductors: The physical reason why defects reduce heat flow, and how to control it

机译:半导体中的热声子和缺陷:缺陷会减少热流的物理原因及其控制方法

获取原文
获取原文并翻译 | 示例
           

摘要

It is generally accepted that heat-carrying phonons in materials scatter off each other (normal or Umklapp scattering) as well as off defects. This assumes static defects, implies quasi-instantaneous interactions and at least some momentum transfer. However, when defect dynamics are explicitly included, the nature of phonon-defect interactions becomes more subtle. Ah initio microcanonical molecular-dynamics simulations show that (1) spatially localized vibrational modes (SLMs), associated with all types of defects in semiconductors, can trap thermal phonons; (2) the vibrational lifetimes of excitations in SLMs are one to two orders of magnitude longer (dozens to hundreds of periods of oscillation) than those of bulk phonons of similar frequency; (3) it is phonon trapping by defects (in SLMs) rather than bulk phonon scattering, which reduces the flow of heat; and (4) the decay of trapped phonons and therefore heat flow can be predicted and controlled-at least to some extent-by the use of carefully selected interfaces and δ layers.
机译:人们普遍认为,材料中的载热声子会相互分散(正常散射或Umklapp散射)以及缺陷。这假定为静态缺陷,意味着准瞬时相互作用和至少一些动量传递。但是,当明确包含缺陷动力学时,声子-缺陷相互作用的性质变得更加微妙。从头开始的微经典分子动力学模拟表明:(1)与半导体中所有类型的缺陷相关的空间局部振动模式(SLM)可以捕获热声子; (2)与相似频率的体声子相比,SLM中激发的振动寿命要长一到两个数量级(几十个振荡周期)。 (3)是由于缺陷(在SLM中)引起的声子俘获,而不是大量声子散射,从而降低了热流; (4)通过使用精心选择的界面和δ层,至少在一定程度上可以预测和控制捕获的声子的衰减,从而可以预测和控制热流。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第11期|112801.1-112801.6|共6页
  • 作者单位

    Physics Department, Texas Tech University, Lubbock, Texas 79409-1051, USA;

    Physics Department, Texas Tech University, Lubbock, Texas 79409-1051, USA;

    Physics Department, Texas Tech University, Lubbock, Texas 79409-1051, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号