首页> 外文学位 >Charged point defect in rutile titanium dioxide: From defect charge distribution to defect phonon free energy.
【24h】

Charged point defect in rutile titanium dioxide: From defect charge distribution to defect phonon free energy.

机译:金红石型二氧化钛的带电点缺陷:从缺陷电荷分布到缺陷声子自由能。

获取原文
获取原文并翻译 | 示例

摘要

The dominant charged point defects in transition metal oxides can change with temperature (T) and oxygen partial pressure (PO2) to control the electrical properties of the materials. Thus it is important to understand how the defect formation energies (DFEs) of all the defects are changed with T and PO2, which is not easily measured experimentally. Density Functional Theory (DFT) is combined with thermodynamics to construct a new methodology to calculate the DFEs ab initio. Rutile TiO 2 is chosen as a model material because it is a relatively simple binary system and there is a wealth of existing macroscopic experimental data, such as its dependence of the electrical conductivity on T and PO2, temperature dependent thermal expansion coefficient, etc.;Chapter 1 introduces the general method to calculate DFEs, which combines DFT with thermodynamics, including the supercell method to calculate the total energies of defective and pure supercells; the use of Bader analysis to analyze the real space charge distribution, which helps choose a potential alignment method to correct for the artificial interaction caused by periodic boundary conditions, and a thermodynamic approach to extrapolate DFEs to any T and PO2.;Chapter 2 discusses the temperature-dependent defect-induced phonon free energy in the harmonic approximation, which gives nontrivial contributions to the DFEs. The temperature dependences of the defect-induced phonon free energies are different from the pure rutile structure, and more importantly they are different for differently charged defects. The physical origin is largely associated with the soft phonon mode at low frequencies for titanium interstitials, while for oxygen vacancies and titanium vacancies the differences in the phonon free energies are caused by the collective contribution from all phonon modes influenced by the introduction of the charged defects.;Chapter 3 points out the necessity of considering the thermal expansion of the materials in the DFE calculation. The differences between harmonic and qusi-harmonic approximations for the phonon free energy and Gibbs free energy calculations are discussed. Defect phase diagrams are constructed in the PO2-T-Ef spaces to explain how the dominant defect types change with environmental conditions.
机译:过渡金属氧化物中的主要带电点缺陷会随着温度(T)和氧分压(PO2)的变化而变化,从而控制材料的电性能。因此,重要的是要了解所有缺陷的缺陷形成能(DFE)如何随T和PO2的变化而变化,而这在实验中是不容易测量的。密度泛函理论(DFT)与热力学相结合,构建了一种从头计算DFE的新方法。选择金红石型TiO 2作为模型材料是因为它是一个相对简单的二元体系,并且存在大量现有的宏观实验数据,例如其电导率对T和PO2的依赖性,与温度有关的热膨胀系数等;第1章介绍了计算DFE的一般方法,该方法将DFT与热力学相结合,其中包括超级电池方法来计算缺陷和纯超级电池的总能量。使用Bader分析来分析实际的空间电荷分布,这有助于选择一种势能对准方法来校正由周期性边界条件引起的人为相互作用,以及一种热力学方法将DFE外推到任何T和PO2。第二章讨论了谐波近似中温度相关的缺陷诱导的声子自由能,这对DFE产生了不小的贡献。缺陷诱发的声子自由能的温度依赖性不同于纯金红石结构,更重要的是,对于带不同电荷的缺陷,它们是不同的。对于钛间隙,物理起因很大程度上与低频的软声子模式有关,而对于氧空位和钛空位,声子自由能的差异是由所有声子模式的共同贡献所引起的,而所有声子模式的共同作用是由于带电缺陷的引入而造成的。第三章指出了在DFE计算中必须考虑材料的热膨胀的必要性。讨论了声子自由能和吉布斯自由能计算的谐波近似与拟谐波近似之间的差异。在PO2-T-Ef空间中构建了缺陷相图,以解释主要缺陷类型如何随环境条件变化。

著录项

  • 作者

    Li, Xin.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Materials science.;Physics.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号