首页> 外文期刊>Journal of Applied Physics >Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality
【24h】

Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

机译:闪烁体材料中电子热化的蒙特卡洛模拟:闪烁体非比例性的含义

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.
机译:在伽马射线诱导的能量级联之后,缺乏与热电子热化相关的长度和时间尺度的可靠定量估计,这模糊了控制闪烁体性能的各种微观过程之间的相互作用,并阻碍了对改进探测器材料的研究。我们应用了由六个重要闪烁晶体的伽马射线辐照产生的热电子的产生和随后热化的详细微观动力学蒙特卡洛模型,以确定由伽马射线产生的激发云的空间范围以及该云进行热化所需的时间与宿主晶格。该模型的主要成分是由伽马激发产生的微观轨道结构的集合体(包括被激发载流子的能量分布),电子-声子散射速率的数值估计以及与被激发载流子的速度和能量相关的计算出的粒子色散。 。所有这些成分均基于材料的电子和声子能带结构的第一原理密度泛函理论计算。给出了蒙特卡洛模型的详细信息以及热化时间和距离分布的结果。根据先前的工作讨论了这些结果。发现在研究的材料中,计算出的热化距离与测得的非比例性呈正相关。在重要的卤化物闪烁体类别中,在确定热化距离时,发现粒子分散度比最大声子能量更具影响力。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第23期|234504.1-234504.13|共13页
  • 作者单位

    Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号