首页> 外文期刊>Journal of Applied Mathematics and Computing >B-convergence of split-step one-leg theta methods for stochastic differential equations
【24h】

B-convergence of split-step one-leg theta methods for stochastic differential equations

机译:随机微分方程的一步式单腿θ方法的B收敛

获取原文
获取原文并翻译 | 示例

摘要

For stochastic differential equations (SDEs) with a superlinearly growing and globally one-sided Lipschitz continuous drift coefficient, the explicit schemes fail to converge strongly to the exact solution (see, Hutzenthaler, Jentzen and Kloeden in Proc. R. Soc. A, rspa.2010.0348v1–rspa.2010.0348, 2010). In this article a class of implicit methods, called split-step one-leg theta methods (SSOLTM), are introduced and are shown to be mean-square convergent for such SDEs if the method parameter satisfies frac12 £ q £ 1frac{1}{2}leqtheta leq1. This result gives an extension of B-convergence from the theta method for deterministic ordinary differential equations (ODEs) to SSOLTM for SDEs. Furthermore, the optimal rate of convergence can be recovered if the drift coefficient behaves like a polynomial. Finally, numerical experiments are included to support our assertions.
机译:对于具有超线性增长且全局单边Lipschitz连续漂移系数的随机微分方程(SDE),显式格式无法严格收敛到精确解(请参见Proc。R. Soc。A,rspa中的Hutzenthaler,Jentzen和Kloeden。 .2010.0348v1-rspa.2010.0348,2010年)。本文介绍了一类隐式方法,称为分步单腿theta方法(SSOLTM),如果方法参数满足frac12£q£1frac {1} {,则显示为此类SDE的均方收敛。 2} leqtheta leq1。该结果将B收敛性从确定性常微分方程(ODE)的theta方法扩展到SDE的SSOLTM。此外,如果漂移系数表现为多项式,则可以恢复最佳收敛速度。最后,包括数值实验以支持我们的主张。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号