首页> 外文期刊>Journal of algorithms & computational technology >Training dictionary by granular computing with L∞-norm for patch granule-based image denoising
【24h】

Training dictionary by granular computing with L∞-norm for patch granule-based image denoising

机译:基于L∞范数的粒度计算训练字典对基于补丁颗粒的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Considering the objects by different granularity reflects the recognition common law of people, granular computing embodies the transformation between different granularity spaces. We present the image denoising algorithm by using the dictionary trained by granular computing with Loo-norm, which realizes three transformations, (1) the transformation from image space to patch granule space, (2) the transformation between granule spaces with different granularities, and (3) the transformation from patch granule space to image space. We demonstrate that the granular computing with Loo-norm achieved the comparable peak signal to noise ratio (PSNR) measure compared with BM3D and patch group prior based denoising for eight natural images.
机译:考虑到不同粒度的对象反映了人们的识别普遍规律,粒度计算体现了不同粒度空间之间的转换。我们通过使用经过Loo-norm粒度计算训练的字典来提出图像去噪算法,该字典实现了三种转换:(1)从图像空间到补丁颗粒空间的转换;(2)不同粒度的颗粒空间之间的转换;以及(3)从补丁颗粒空间到图像空间的转换。我们证明,与BM3D和基于斑块组的基于先验的8个自然图像相比,使用Loo-norm进行的粒度计算可实现相当的峰值信噪比(PSNR)度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号