首页> 美国卫生研究院文献>Scientific Reports >A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images
【2h】

A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images

机译:一种新颖的基于通用字典的去噪方法可改善3D延时荧光显微镜图像中的嘈杂和密集堆积的核分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time-lapse fluorescence microscopy is an essential technique for quantifying various characteristics of cellular processes, i.e. cell survival, migration, and differentiation. To perform high-throughput quantification of cellular processes, nuclei segmentation and tracking should be performed in an automated manner. Nevertheless, nuclei segmentation and tracking are challenging tasks due to embedded noise, intensity inhomogeneity, shape variation as well as a weak boundary of nuclei. Although several nuclei segmentation approaches have been reported in the literature, dealing with embedded noise remains the most challenging part of any segmentation algorithm. We propose a novel denoising algorithm, based on sparse coding, that can both enhance very faint and noisy nuclei signal but simultaneously detect nuclei position accurately. Furthermore our method is based on a limited number of parameters, with only one being critical, which is the approximate size of the objects of interest. We also show that our denoising method coupled with classical segmentation method works properly in the context of the most challenging cases. To evaluate the performance of the proposed method, we tested our method on two datasets from the cell tracking challenge. Across all datasets, the proposed method achieved satisfactory results with 96:96% recall for the C. elegans dataset. Besides, in the Drosophila dataset, our method achieved very high recall (99:3%).
机译:延时荧光显微镜是量化细胞过程各种特征的基本技术,即细胞存活,迁移和分化。为了对细胞过程进行高通量定量,应以自动化方式进行细胞核的分割和跟踪。然而,由于嵌入的噪声,强度不均匀,形状变化以及原子核的边界较弱,所以原子核的分割和跟踪是一项艰巨的任务。尽管在文献中已经报道了几种核分割方法,但是处理嵌入式噪声仍然是任何分割算法中最具挑战性的部分。我们提出了一种基于稀疏编码的新型去噪算法,该算法既可以增强非常微弱和嘈杂的核信号,又可以同时准确检测核位置。此外,我们的方法基于有限数量的参数,只有一个是关键参数,这是感兴趣对象的近似大小。我们还表明,我们的去噪方法与经典分割方法相结合,可以在最具挑战性的情况下正常工作。为了评估所提出方法的性能,我们在细胞跟踪挑战的两个数据集上测试了我们的方法。在所有数据集中,该方法对秀丽隐杆线虫数据集的召回率均达到96:96%。此外,在果蝇数据集中,我们的方法获得了很高的召回率(99:3%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号