首页> 外文期刊>Journal of Algebraic Combinatorics >All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism
【24h】

All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism

机译:所有顶点传递的局部拟图都具有半正则自同构

获取原文
获取原文并翻译 | 示例

摘要

The polycirculant conjecture states that every transitive 2-closed permutation group of degree at least two contains a nonidentity semiregular element, that is, a nontrivial permutation whose cycles all have the same length. This would imply that every vertex-transitive digraph with at least two vertices has a nonidentity semiregular automorphism. In this paper we make substantial progress on the polycirculant conjecture by proving that every vertex-transitive, locally-quasiprimitive graph has a nonidentity semiregular automorphism. The main ingredient of the proof is the determination of all biquasiprimitive permutation groups with no nontrivial semiregular elements.
机译:多循环猜想指出,每个至少两个度数的可传递2闭合置换组都包含一个不等式半正则元素,即一个非平凡的置换,其周期都具有相同的长度。这意味着每个具有至少两个顶点的顶点传递有向图都具有非恒等式半正则自同构。在本文中,我们证明了每个顶点传递,局部拟原始图具有不等式半正则自同构,从而在多循环猜想上取得了实质性进展。证明的主要内容是确定所有没有准平凡的半规则元素的双准本原置换组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号