首页> 外文会议>Approximation, Randomization and Combinatorial Optimization: Algorithms and Techniques >Quantum and Randomized Lower Bounds for Local Search on Vertex-Transitive Graphs
【24h】

Quantum and Randomized Lower Bounds for Local Search on Vertex-Transitive Graphs

机译:顶点传递图上局部搜索的量子和随机下界

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of local search on a graph. Given a real-valued black-box function f on the graph's vertices, this is the problem of determining ar local minimum of -a vertex v for which f(v) is no more than f evaluated at any of v's neighbors. In 1983, Aldous gave the first strong lower bounds for the problem, showing that any randomized algorithm requires Ω(2~(n/2-o(1))) queries to determine a local minima on the n-dimensional hypercube. The next major step forward was not until 2004 when Aaronson, introducing a new method for query complexity bounds, both strengthened this lower bound to Ω(2~(n/2)~2) and gave an analogous lower bound on the quantum query complexity. While these bounds are very strong, they are known only for narrow families of graphs (hypercubes and grids). We show how to generalize Aaronson's techniques in order to give randomized (and quantum) lower bounds on the query complexity of local search for the family of vertex-transitive graphs. In particular, we show that for any vertex-transitive graph G of N vertices and diameter d, the randomized and quantum query complexities for local search on G are Ω ((N~(1/2))/ d log N) and Ω ((N~(1/4))/(d log N ~(1/2))), respectively.
机译:我们研究图上的局部搜索问题。给定图顶点上的实值黑盒函数f,这就是确定-a顶点v的局部最小值的问题,对于该顶点v,f(v)不大于在v的任何邻居处求得的f。 1983年,Aldous给出了该问题的第一个强下界,表明任何随机算法都需要Ω(2〜(n / 2-o(1)))查询来确定n维超立方体上的局部最小值。向前迈出的下一个重大步骤是直到2004年Aaronson提出了一种查询复杂度界限的新方法,既将这个下限增强到Ω(2〜(n / 2)/ n〜2),又在量子上给出了一个类似的下限查询复杂度。尽管这些界限非常强,但它们仅以狭窄的图形族(超立方体和网格)而闻名。我们展示了如何推广Aaronson的技术,以便为顶点传递图族的本地搜索的查询复杂度提供随机(和量子)下限。特别地,我们表明,对于任何具有N个顶点和直径d的顶点传递图G,在G上进行局部搜索的随机和量子查询复杂度分别为Ω((N〜(1/2))/ d log N)和Ω ((N〜(1/4))/(d log N〜(1/2)))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号