首页> 外文期刊>Journal of Advanced Transportation >A Hybrid Method for Traffic Incident Duration Prediction Using BOA-Optimized Random Forest Combined with Neighborhood Components Analysis
【24h】

A Hybrid Method for Traffic Incident Duration Prediction Using BOA-Optimized Random Forest Combined with Neighborhood Components Analysis

机译:使用BOA优化随机林的交通事故持续时间预测混合方法与邻域分量分析相结合

获取原文
获取原文并翻译 | 示例

摘要

Predicting traffic incident duration is important for effective and real-time traffic incident management (TIM), which helps to minimize traffic congestion, environmental pollution, and secondary incident related to this incident. Traffic incident duration prediction methods often use more input variables to obtain better prediction results. However, the problems that available variables are limited at the beginning of an incident and how to select significant variables are ignored to some extent. In this paper, a novel prediction method named NCA-BOA-RF is proposed using the Neighborhood Components Analysis (NCA) and the Bayesian Optimization Algorithm (BOA)-optimized Random Forest (RF) model. Firstly, the NCA is applied to select feature variables for traffic incident duration. Then, RF model is trained based on the training set constructed using feature variables, and the BOA is employed to optimize the RF parameters. Finally, confusion matrix is introduced to measure the optimized RF model performance and compare with other methods. In addition, the performance is also tested in the absence of some feature variables. The results demonstrate that the proposed method not only has high accuracy, but also exhibits excellent reliability and robustness.
机译:预测交通事故持续时间对于有效和实时交通事故管理(TIM)非常重要,这有助于最大限度地减少与此事件相关的交通拥堵,环境污染和二级事件。流量事件持续时间预测方法通常使用更多的输入变量来获得更好的预测结果。但是,可用变量在事件开始时有限的问题,以及如何在某种程度上忽略如何选择重大变量。本文使用邻域分量分析(NCA)和贝叶斯优化算法(BOA) - 优化随机林(RF)模型提出了一种名为NCA-BOA-RF的新型预测方法。首先,将应用NCA来选择用于流量事件持续时间的特征变量。然后,RF模型基于使用特征变量构造的训练集进行培训,并且使用蟒蛇优化RF参数。最后,引入了混淆矩阵来测量优化的RF模型性能并与其他方法进行比较。此外,在不存在某些特征变量的情况下也测试性能。结果表明,所提出的方法不仅具有高精度,而且表现出优异的可靠性和鲁棒性。

著录项

  • 来源
    《Journal of Advanced Transportation》 |2019年第1期|131-141|共11页
  • 作者单位

    Shandong Univ Technol Sch Transportat & Vehicle Engn Zibo 255049 Shandong Peoples R China;

    Shandong Univ Technol Sch Transportat & Vehicle Engn Zibo 255049 Shandong Peoples R China;

    Shandong Univ Technol Sch Transportat & Vehicle Engn Zibo 255049 Shandong Peoples R China;

    Shandong Univ Technol Sch Marxism Studies Zibo 255049 Shandong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号