首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Traffic Crash Severity Prediction—A Synergy by Hybrid Principal Component Analysis and Machine Learning Models
【2h】

Traffic Crash Severity Prediction—A Synergy by Hybrid Principal Component Analysis and Machine Learning Models

机译:交通崩溃严重性预测 - 混合主成分分析和机器学习模型的协同作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accurate prediction of road traffic crash (RTC) severity contributes to generating crucial information, which can be used to adopt appropriate measures to reduce the aftermath of crashes. This study aims to develop a hybrid system using principal component analysis (PCA) with multilayer perceptron neural networks (MLP-NN) and support vector machines (SVM) in predicting RTC severity. PCA shows that the first nine components have an eigenvalue greater than one. The cumulative variance percentage explained by these principal components was found to be 67%. The prediction accuracies of the models developed using the original attributes were compared with those of the models developed using principal components. It was found that the testing accuracies of MLP-NN and SVM increased from 64.50% and 62.70% to 82.70% and 80.70%, respectively, after using principal components. The proposed models would be beneficial to trauma centers in predicting crash severity with high accuracy so that they would be able to prepare for appropriate and prompt medical treatment.
机译:道路交通崩溃(RTC)严重程度的准确预测有助于产生至关重要的信息,可用于采取适当措施减少崩溃后的后果。本研究旨在使用主成分分析(PCA)的混合动力系统,其中具有多层的Perceptron神经网络(MLP-NN)和支持载体机(SVM)预测RTC严重程度。 PCA表明,前九个成分具有大于1的特征值。发现这些主要成分解释的累积方差百分比为67%。将使用原始属性开发的模型的预测精度与使用主组件开发的模型的模型进行了比较。发现使用主成分后,MLP-NN和SVM的测试精度分别从64.50%和62.70%增加到82.70%和80.70%。拟议的模型将有利于创伤中心以高精度预测碰撞严重程度,以便能够为适当和及时的医疗准备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号