首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency
【24h】

Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency

机译:基于局部云频率的最佳平滑卫星植被指数时间序列提高春季候选检测的准确性

获取原文
获取原文并翻译 | 示例

摘要

Vegetation phenology can be extracted from vegetation index (VI) time series of satellite data. The maximum value composite (MVC) procedure and smoothing filters have been conventionally used as standard methods to exclude noises in the VI time series before extracting the vegetation phenology [e.g., National Aeronautics and Space Administration (NASA) VNP22Q2 and United States Geological Survey (USGS) MCD12Q2 phenology products]. However, it is unclear how to optimize the MVC and smoothing filters to produce the most accurate phenology metrics given that cloud frequency varies spatially. This study designed two simulation experiments, namely (1) using only the MVC and (2) using the MVC and smoothing filters together to smooth the enhanced vegetation index (EVI) time series for detecting spring phenology, i.e., start of season (SOS), over the northern hemisphere (north of 30 degrees N) on a 5 degrees x 5 degrees grid cell basis by the inflection point and relative threshold algorithms. The results revealed that (1) the inappropriate selection of MVC periods (e.g., too short or too long) affected the accuracy of the SOS extracted by both phenology detection algorithms; (2) a filtering process with optimal parameters can reduce the effects of the MVC period on SOS extraction to a considerable extent, i.e., 65% and 61% for iterative Savitzky-Golay (SG) and penalized cubic splines (SP) filters, respectively; (3) optimal parameters for both the MVC and smoothing filters showed significant spatial heterogeneity; and (4) validation with ground PhenoCam data indicated that optimal parameters of the MVC and smoothing filters can produce more accurate results than official vegetation phenology products that use uniform parameters. Specifically, the R-2 values of the NASA product and the USGS product were 0.58 and 0.67, which were increased to 0.70 and 0.81, respectively, by the optimal smoothing process. Optimal parameters of the MVC and smoothing filters provided by this study in each 5 degrees x 5 degrees sub-region may help future studies to improve the accuracy of phenology detection from satellite VI time series.
机译:植被候选素质可以从植被指数(VI)时间序列的卫星数据中提取。最大值复合(MVC)程序和平滑过滤器通常用作在提取植被候选的VI时间序列中排除噪声的标准方法[例如,美国国家航空航天局(NASA)VNP22Q2和美国地质调查(USGS )MCD12Q2候选产品]。然而,目前尚不清楚如何优化MVC和平滑滤波器以产生云频率在空间上变化的最精确的候选度量。这项研究设计了两个模拟实验,即(1)仅使用MVC和(2)使用MVC和平滑滤光器一起使用,以平滑增强的植被指数(EVI)时间序列来检测春季候选,即季节开始(SOS) ,在北半球(30度N北部)在5度x 5度的网格单元上,通过拐点和相对阈值算法基础。 The results revealed that (1) the inappropriate selection of MVC periods (e.g., too short or too long) affected the accuracy of the SOS extracted by both phenology detection algorithms; (2)具有最佳参数的过滤过程可以减少MVC时期对SOS提取的影响,即迭代Savitzky-golay(SG)和惩罚立方样条(SP)过滤器的65%和61% ; (3)MVC和平滑滤波器的最佳参数显示出显着的空间异质性; (4)使用地面现象数据的验证表明,MVC和平滑滤光器的最佳参数可以产生比使用均匀参数的官方植被酚醛化产品的更准确的结果。具体地,通过最佳平滑过程,NASA产品和USGS产物的R-2值分别为0.58和0.67,分别增加到0.70和0.81。通过该研究在每个5度x 5度子区域提供的MVC和平滑滤波器的最佳参数可以帮助未来的研究,以提高卫星VI时间序列的候选检测的准确性。

著录项

  • 来源
  • 作者单位

    Hong Kong Polytech Univ Dept Land Surveying & Geoinformat Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Land Surveying & Geoinformat Hong Kong Peoples R China|Hong Kong Polytech Univ Res Inst Sustainable Urban Dev Hong Kong Peoples R China;

    Beijing Normal Univ State Key Lab Earth Surface Proc & Resource Ecol Fac Geog Sci Beijing 100875 Peoples R China;

    Minist Agr & Rural Affairs Key Lab Agr Remote Sensing AGRIRS Beijing 100081 Peoples R China|Chinese Acad Agr Sci Inst Agr Resources & Reg Planning Beijing 100081 Peoples R China;

    Beijing Normal Univ State Key Lab Earth Surface Proc & Resource Ecol Fac Geog Sci Beijing 100875 Peoples R China;

    Chiba Univ Ctr Environm Remote Sensing Chiba 2638522 Japan;

    Hong Kong Polytech Univ Dept Land Surveying & Geoinformat Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Land Surveying & Geoinformat Hong Kong Peoples R China;

    Southwest Jiaotong Univ Fac Geosci & Environm Engn Chengdu 611756 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Maximum value composite; Smoothing filter; Enhanced vegetation index; Spring phenology; Start of season;

    机译:最大值复合;平滑过滤器;增强植被指数;春季候选;赛季开始;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号