首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >High-resolution triplet network with dynamic multiscale feature for change detection on satellite images
【24h】

High-resolution triplet network with dynamic multiscale feature for change detection on satellite images

机译:具有动态多尺度的高分辨率三联网网络,用于卫星图像上的变更检测

获取原文
获取原文并翻译 | 示例

摘要

Change detection in remote sensing images aims to accurately determine any significant land surface changes based on acquired multi-temporal image data, being a pivotal task of remote sensing image processing. Over the past few years, owing to its powerful learning and expression ability, deep learning has been widely applied in the general field of image processing and has demonstrated remarkable potentials in performing change detection in images. However, a majority of the existing deep learning-based change detection mechanisms are modified from single-image semantic segmentation algorithms, without considering the temporal information contained within the images, thereby not always appropriate for real-world change detection. This paper proposes a High-Resolution Triplet Network (HRTNet) framework, including a dynamic inception module, to tackle such shortcomings in change detection. First, a novel triplet input network is introduced, which is capable of learning bi-temporal image features, extracting the temporal information reflecting the difference between images over time. Then, a network is employed to extract high-resolution image features, ensuring the learned features preserving high-resolution characteristics with minimal reduction of information. The paper also proposes a novel dynamic inception module, which helps improve the feature expression ability of HRTNet, enriching the multi-scale information of the features extracted. Finally, the distances between feature pairs are measured to generate a high-precision change map. The effectiveness and robustness of HRTNet are verified on three popular high-resolution remote sensing image datasets. Systematic experimental results show that the proposed approach outperforms state-of-the-art change detection methods.
机译:遥感图像中的变化检测旨在基于获取的多时间图像数据准确地确定任何重要的地面改变,是遥感图像处理的关键任务。在过去的几年里,由于其强大的学习和表达能力,深度学习已广泛应用于图像处理的一般领域,并且在图像处理中表现出显着的潜力。然而,从单图像语义分段算法修改了大多数现有的深度学习改变检测机制,而不考虑图像内包含的时间信息,从而不始终适合真实的变化检测。本文提出了一种高分辨率三联网(HRTNET)框架,包括动态成立模块,以解决变化检测中的这种缺点。首先,引入了一种新型三联网输入网络,其能够学习双颞图像特征,提取反映图像之间的差异的时间信息。然后,采用网络来提取高分辨率图像特征,确保学习的特征保持高分辨率特性,其信息减小最小。本文还提出了一种新颖的动态初始模块,它有助于提高HRTNET的特征表达能力,丰富提取的特征的多尺度信息。最后,测量特征对之间的距离以产生高精度变化图。 HRTNET的有效性和稳健性在三个流行的高分辨率遥感图像数据集中验证。系统实验结果表明,该方法优于最先进的变更检测方法。

著录项

  • 来源
  • 作者单位

    Northwestern Polytech Univ Sch Comp Sci Natl Engn Lab Integrated AeroSp Ground Ocean Big Shaanxi Prov Key Lab Speech & Image Informat Proc Xian 710129 Peoples R China;

    Aberystwyth Univ Fac Business & Phys Sci Dept Comp Sci Aberystwyth SY23 3DB Dyfed Wales;

    Northwestern Polytech Univ Sch Comp Sci Natl Engn Lab Integrated AeroSp Ground Ocean Big Shaanxi Prov Key Lab Speech & Image Informat Proc Xian 710129 Peoples R China;

    Aberystwyth Univ Fac Business & Phys Sci Dept Comp Sci Aberystwyth SY23 3DB Dyfed Wales;

    Aberystwyth Univ Fac Business & Phys Sci Dept Comp Sci Aberystwyth SY23 3DB Dyfed Wales;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Change detection; Triplet network; High-resolution images; Dynamic convolution; Remote sensing;

    机译:改变检测;三重态网络;高分辨率图像;动态卷积;遥感;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号