首页> 外文期刊>International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems >SIMPLIFIED FUZZY INFERENCE RULE-BASED GENETICALLY OPTIMIZED HYBRID FUZZY NEURAL NETWORKS
【24h】

SIMPLIFIED FUZZY INFERENCE RULE-BASED GENETICALLY OPTIMIZED HYBRID FUZZY NEURAL NETWORKS

机译:基于简化模糊推理规则的遗传优化混合模糊神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the condition part of the rule-based structure of the gHFNN. The conclusion part of the gHFNN is designed using PNNs. We distinguish between two types of the simplified fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the conclusion part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, we experimented with three representative numerical examples. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when compared with other neurofuzzy models.
机译:在这项研究中,我们介绍了遗传优化的混合模糊神经网络(gHFNN)的高级体系结构,并开发了支持其构建的综合设计方法。包括一系列数值实验,以说明网络的性能。 gHFNN的构建利用了计算智能(CI)的基本技术,即模糊集,神经网络和遗传算法(GA)。 gHFNN的体系结构是通过将模糊神经网络(FNN)与多项式神经网络(PNN)相结合而产生的遗传优化驱动混合系统的协同使用而产生的。在此串联中,FNN支持gHFNN基于规则的结构的条件部分的形成。 gHFNN的结论部分是使用PNN设计的。我们在基于简化的模糊推理规则的FNN结构的两种类型之间进行了区分,显示了这种分类法如何取决于输入变量的模糊分区的类型。关于gHFNN的结论部分,PNN的发展停留在两种通用的优化机制上:结构优化是通过GA实现的,而在参数优化的情况下,我们将基于标准最小二乘法进行学习。为了评估gHFNN的性能,我们尝试了三个具有代表性的数值示例。对比分析表明,与其他神经模糊模型相比,所提出的gHFNN具有更高的准确性和出色的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号