首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Short-Term Time Wind Speed Forecasting Based on Spatio-Temporal Geostatistical Approach and Kriging Method
【24h】

Short-Term Time Wind Speed Forecasting Based on Spatio-Temporal Geostatistical Approach and Kriging Method

机译:基于时空地稳态方法和克里格法的短期时间风速预测

获取原文
获取原文并翻译 | 示例

摘要

Short-term wind speed prediction is an essential task for wind resource and wind energy planning. However, most of this literature does not take into account the spatio-termporal correlation of wind data from the geographical field. For this reason, we propose an integrated spatio-temporal kriging and functional kriging strategy to exploit such spatio-temporal correlation into the wind speed prediction. First, the deterministic trend component in wind data is estimated to be removed. The residuals are used for spatio-temporal modeling and prediction. Based on the spatio-temporal kriging framework, four spatio-temporal covariance models (product-sum model, separable exponential product model, separable and nonseparable Gneiting models) are considered which describe the spatio-temporal correlation of wind data. In particular, the flexibility of using the nonseparable Gneiting model is highlighted. More specifically, four spatio-temporal random fields are modeled from the 12 wind monitoring stations over Ireland. We also use an involved weighted least squares method for estimating parameters of the four covariance models involved in the spatio-temporal kriging strategy. We apply the fitted covariance models to generate day-ahead wind speed predictions at both observed and nonobserved locations where wind station already exist but also to nearby locations. Leave-one-out cross-validation is applied to check the significance of the difference among the four models, these spatio-temporal ordinary kriging (STOK), functional ordinary kriging (FOK) and autoregressive integrated moving average (ARIMA) methods are compared for day-ahead wind speed predictions. Forecasting results indicate that the predicting accuracy is improved almost 33.5% using FOK compared with three approaches which confirm the effectiveness of the functional kriging method in the paper.
机译:短期风速预测是风力资源和风能规划的重要任务。然而,这些文献中的大部分都不考虑到来自地理领域的风数据的时空相关性。因此,我们提出了一种综合的时空克里格和功能克里格策略,以利用这种时空相关性进入风速预测。首先,估计风数据中的确定性趋势分量被估计被删除。残留物用于时空建模和预测。基于时空Kriging框架,考虑了四种时空协方差模型(产品总和模型,可分离指数产品模型,可分离和不可分离的整形模型),描述了风数据的时空相关性。特别是,突出了使用非可分解的鼻子模型的灵活性。更具体地说,四个时空随机字段由爱尔兰的12个风电台建模。我们还使用涉及的加权最小二乘法方法来估计涉及的时空Kriging策略中涉及的四个协方差模型的参数。我们应用装有的协方差模型,以在未观察到的和非经历的位置产生一天的风速预测,其中风电台已经存在,而且是附近的位置。留下一张交叉验证用于检查四种模型中差异的重要性,这些时空普通克里格(STOK),功能普通克里格(FOK)和自回归综合移动平均(ARIMA)方法进行了比较日前风速预测。预测结果表明,预测精度与三种方法相比,使用FOK改善了近33.5%的近33.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号