首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Large-Scale Multi-modal Distance Metric Learning with Application to Content-Based Information Retrieval and Image Classification
【24h】

Large-Scale Multi-modal Distance Metric Learning with Application to Content-Based Information Retrieval and Image Classification

机译:应用于基于内容的信息检索和图像分类的大规模多模态距离度量学习

获取原文
获取原文并翻译 | 示例

摘要

Metric learning algorithms aim to make the conceptually related data items closer and keep dissimilar ones at a distance. The most common approach for metric learning on the Mahalanobis method. Despite its success, this method is limited to find a linear projection and also suffer from scalability respecting both the dimensionality and the size of input data. To address these problems, this paper presents a new scalable metric learning algorithm for multi-modal data. Our method learns an optimal metric for any feature set of the multi-modal data in an online fashion. We also combine the learned metrics with a novel Passive/Aggressive (PA)-based algorithm which results in a higher convergence rate compared to the state-of-the-art methods. To address scalability with respect to dimensionality, Dual Random Projection (DRP) is adopted in this paper. The present method is evaluated on some challenging machine vision datasets for image classification and Content-Based Information Retrieval (CBIR) tasks. The experimental results confirm that the proposed method significantly surpasses other state-of-the-art metric learning methods in most of these datasets in terms of both accuracy and efficiency.
机译:度量学习算法旨在使概念相关的数据项更近,并且在远处保持异常的数据项。 Mahalanobis方法上的度量学习方法最常见的方法。尽管其成功,但该方法仅限于找到线性投影并遭受尊重尺寸和输入数据大小的可伸缩性。为了解决这些问题,本文提出了一种新的多模态数据的可扩展度量学习算法。我们的方法以在线方式为多模态数据的任何特征集的最佳度量学习。我们还将学习的指标与学习的指标与新的被动/攻击性(PA)基于算法结合起来,与最先进的方法相比,导致收敛速度更高。为了解决方面的可扩展性,本文采用了双随机投影(DRP)。对图像分类的一些具有挑战性的机器视觉数据集进行评估本方法,以及基于内容的信息检索(CBIR)任务。实验结果证实,在准确性和效率方面,该方法在大多数这些数据集中显着超越了其他最先进的公制学习方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号