首页> 外文期刊>Image and Vision Computing >Kernel-based distance metric learning for content-based image retrieval
【24h】

Kernel-based distance metric learning for content-based image retrieval

机译:基于内核的距离度量学习,用于基于内容的图像检索

获取原文
获取原文并翻译 | 示例

摘要

For a specific set of features chosen for representing images, the performance of a content-based image retrieval (CBIR) system depends critically on the similarity or dissimilarity measure used. Instead of manually choosing a distance function in advance, a more promising approach is to learn a good distance function from data automatically. In this paper, we propose a kernel approach to improve the retrieval performance of CBIR systems by learning a distance metric based on pairwise constraints between images as supervisory information. Unlike most existing metric learning methods which learn a Mahalanobis metric corresponding to performing linear transformation in the original image space, we define the transformation in the kernel-induced feature space which is nonlinearly related to the image space. Experiments performed on two real-world image databases show that our method not only improves the retrieval performance of Euclidean distance without distance learning, but it also outperforms other distance learning methods significantly due to its higher flexibility in metric learning.
机译:对于为表示图像而选择的一组特定功能,基于内容的图像检索(CBIR)系统的性能关键取决于所使用的相似性或相异性度量。代替预先手动选择距离函数,一种更有希望的方法是自动从数据中学习良好的距离函数。在本文中,我们提出了一种内核方法,通过学习基于图像之间成对约束的距离度量作为监督信息来提高CBIR系统的检索性能。与大多数现有的度量学习方法不同,该方法学习对应于在原始图像空间中执行线性变换的Mahalanobis度量的方法,我们定义了与图像空间非线性相关的核诱导特征空间中的变换。在两个真实世界的图像数据库上进行的实验表明,我们的方法不仅提高了不进行距离学习的欧氏距离的检索性能,而且由于其在度量学习中的更高灵活性,也大大优于其他距离学习方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号