首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Online Multi-Modal Distance Metric Learning with Application to Image Retrieval
【24h】

Online Multi-Modal Distance Metric Learning with Application to Image Retrieval

机译:在线多模态距离度量学习及其在图像检索中的应用

获取原文
获取原文并翻译 | 示例

摘要

Distance metric learning (DML) is an important technique to improve similarity search in content-based image retrieval. Despite being studied extensively, most existing DML approaches typically adopt a single-modal learning framework that learns the distance metric on either a single feature type or a combined feature space where multiple types of features are simply concatenated. Such single-modal DML methods suffer from some critical limitations: (i) some type of features may significantly dominate the others in the DML task due to diverse feature representations; and (ii) learning a distance metric on the combined high-dimensional feature space can be extremely time-consuming using the naive feature concatenation approach. To address these limitations, in this paper, we investigate a novel scheme of online multi-modal distance metric learning (OMDML), which explores a unified two-level online learning scheme: (i) it learns to optimize a distance metric on each individual feature space; and (ii) then it learns to find the optimal combination of diverse types of features. To further reduce the expensive cost of DML on high-dimensional feature space, we propose a low-rank OMDML algorithm which not only significantly reduces the computational cost but also retains highly competing or even better learning accuracy. We conduct extensive experiments to evaluate the performance of the proposed algorithms for multi-modal image retrieval, in which encouraging results validate the effectiveness of the proposed technique.
机译:距离度量学习(DML)是提高基于内容的图像检索中相似度搜索的一项重要技术。尽管已进行了广泛研究,但大多数现有DML方法通常采用单模式学习框架,该框架可在单个要素类型或组合了多种要素的组合要素空间上学习距离度量。这种单模式DML方法受到一些关键限制:(i)由于特征表示形式多样,某些类型的特征可能会在DML任务中显着支配其他特征; (ii)使用朴素的特征级联方法在组合的高维特征空间上学习距离度量可能非常耗时。为了解决这些局限性,在本文中,我们研究了一种新颖的在线多模式距离度量学习(OMDML)方案,该方案探索了一个统一的两级在线学习方案:(i)它学习在每个人身上优化距离度量特征空间; (ii)然后学会找到各种类型的特征的最佳组合。为了进一步降低DML在高维特征空间上的昂贵成本,我们提出了一种低阶OMDML算法,该算法不仅可以显着降低计算成本,而且可以保持高度竞争甚至更好的学习准确性。我们进行了广泛的实验,以评估所提出算法用于多模式图像检索的性能,其中令人鼓舞的结果证实了所提出技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号