首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Freshness Classification of Horse Mackerels with E-Nose System Using Hybrid Binary Decision Tree Structure
【24h】

Freshness Classification of Horse Mackerels with E-Nose System Using Hybrid Binary Decision Tree Structure

机译:使用混合二进制决策树结构与电子鼻系统的马鲭鱼的新鲜度分类

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study is to test the freshness of horse mackerels by using a low cost electronic nose system composed of eight different metal oxide sensors. The process of freshness evaluation covers a seals of seven different classes corresponding to 1, 3, 5, 7, 9, 11, and 13 storage days. These seven classes are categorized according to six different classifiers in the proposed binary decision tree structure. Classifiers at each particular node of the tree are individually trained with the training dataset. To increase success in determining the level of fish freshness, one of the k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and Bayes methods is selected for every classifier and the feature spaces change in every node. The significance of this study among the others in the literature is that this proposed decision tree structure has never been applied to determine fish freshness before. Because the freshness of fish is observed under actual market storage conditions, the classification is more difficult. The results show that the electronic nose designed with the proposed decision tree structure is able to determine the freshness of horse mackerels with 85.71% accuracy for the test data obtained one year after the training process. Also, the performances of the proposed methods are compared against conventional methods such as Bayes, k-NN, and LDA.
机译:本研究的目的是使用由八种不同的金属氧化物传感器组成的低成本电子鼻系统来测试马鲭鱼的新鲜度。新鲜度评价的过程覆盖七种不同类别的密封件,对应于1,3,5,7,9,11和13个储存天。这七个类根据所提出的二进制决策树结构中的六个不同分类器进行分类。树的每个特定节点的分类器都是用训练数据集进行单独培训的。为了增加成功确定鱼类新鲜度的水平,为每个分类器选择K-Collect邻居(K-NN),支持向量机(SVM),线性判别分析(LDA)和贝叶斯方法之一,并且特征空间改变在每个节点中。本研究在文献中的其他研究的意义是,这一提出的决策树结构从未被应用于确定鱼的新鲜度。由于在实际市场储存条件下观察了鱼的新鲜度,因此分类更加困难。结果表明,采用所提出的决策树结构设计的电子鼻部能够确定训练过程一年后的测试数据的85.71%的马鲭鱼的新鲜度。此外,将所提出的方法的性能与常规方法进行比较,例如贝叶斯,K-NN和LDA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号