首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >MINING GENE EXPRESSION DATABASES FOR LOCAL CAUSAL RELATIONSHIPS USING A SIMPLE CONSTRAINT-BASED ALGORITHM
【24h】

MINING GENE EXPRESSION DATABASES FOR LOCAL CAUSAL RELATIONSHIPS USING A SIMPLE CONSTRAINT-BASED ALGORITHM

机译:使用基于约束的简单算法的局部因果关系的挖掘基因表达数据库

获取原文
获取原文并翻译 | 示例

摘要

There is great potential in mining gene expression microarray databases to discover causal relationships in the gene-regulation pathway. Several methods using Bayesian networks have been reported. Most of them use a heuristics search based on the criteria for choosing a network, but these methods are often computationally intractable for microarray data with thousands of genes. In this work, a simple constrained-based, local causal discovery method is presented. This method is computationally feasible but does not attempt to discover complete causal structure. To show the effectiveness of this method, we have conducted simulations and applied this method to the data set from Hughes et al. from 300 expression profiles of yeast. Using this method, results of simulation data tests demonstrated that the accuracy ratios of causal relationships became higher when the sample size increased. From the yeast data set, a number of causal relations were found. A cursory analysis shows some of the relations have biological sense, others need further investigation.
机译:在挖掘基因表达微阵列数据库中发现基因调控途径中的因果关系具有巨大潜力。已经报道了使用贝叶斯网络的几种方法。他们中的大多数基于选择网络的标准使用启发式搜索,但是这些方法对于具有数千个基因的微阵列数据通常在计算上难以处理。在这项工作中,提出了一种简单的基于约束的局部因果发现方法。该方法在计算上是可行的,但并未尝试发现完整的因果结构。为了证明这种方法的有效性,我们进行了仿真,并将其应用于休斯等人的数据集。酵母的300种表达谱使用这种方法,模拟数据测试的结果表明,因果关系的准确率随着样本数量的增加而提高。从酵母数据集中,发现了许多因果关系。粗略的分析表明,某些关系具有生物学意义,另一些需要进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号