首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >A constraint-based genetic algorithm approach for mining classification rules
【24h】

A constraint-based genetic algorithm approach for mining classification rules

机译:基于约束的遗传算法挖掘分类规则

获取原文
获取原文并翻译 | 示例

摘要

Data mining is an information extraction process that aims to discover valuable knowledge in databases. Existing genetic algorithms (GAs) designed for rule induction evaluates the rules as a whole via a fitness function. Major drawbacks of GAs for rule induction include computation inefficiency, accuracy and rule expressiveness. In this paper, we propose a constraint-based genetic algorithm (CBGA) approach to reveal more accurate and significant classification rules. This approach allows constraints to be specified as relationships among attributes according to predefined requirements, user's preferences, or partial knowledge in the form of a constraint network. The constraint-based reasoning is employed to produce valid chromosomes using constraint propagation to ensure the genes to comply with the predefined constraint network. The proposed approach is compared with a regular GA and C4.5 using two UCI repository data sets. Better classification accurate rates from CBGA are demonstrated.
机译:数据挖掘是一种信息提取过程,旨在发现数据库中的宝贵知识。设计用于规则归纳的现有遗传算法(GA)通过适应度函数对规则进行整体评估。 GA对于规则归纳的主要缺点包括计算效率低,准确性和规则表达性。在本文中,我们提出了一种基于约束的遗传算法(CBGA)方法来揭示更准确和重要的分类规则。这种方法允许根据预定义的要求,用户的偏好或约束网络形式的部分知识,将约束指定为属性之间的关系。基于约束的推理用于使用约束传播来生成有效染色体,以确保基因符合预定义的约束网络。使用两个UCI存储库数据集,将该提议的方法与常规GA和C4.5进行了比较。证明了来自CBGA的更好的分类准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号