首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >ONLINE MULTIPLE TARGETS DETECTION AND TRACKING FROM MOBILE ROBOT IN CLUTTERED INDOOR ENVIRONMENTS WITH DEPTH CAMERA
【24h】

ONLINE MULTIPLE TARGETS DETECTION AND TRACKING FROM MOBILE ROBOT IN CLUTTERED INDOOR ENVIRONMENTS WITH DEPTH CAMERA

机译:深度相机在杂乱室内环境中移动机器人的在线多目标检测与跟踪

获取原文
获取原文并翻译 | 示例

摘要

Indoor environment is a common scene in our everyday life, and detecting and tracking multiple targets in this environment is a key component for many applications. However, this task still remains challenging due to limited space, intrinsic target appearance variation, e.g. full or partial occlusion, large pose deformation, and scale change. In the proposed approach, we give a novel framework for detection and tracking in indoor environments, and extend it to robot navigation. One of the key components of our approach is a virtual top view created from an RGB-D camera, which is named ground plane projection (GPP). The key advantage of using GPP is the fact that the intrinsic target appearance variation and extrinsic noise is far less likely to appear in GPP than in a regular side-view image. Moreover, it is a very simple task to determine free space in GPP without any appearance learning even from a moving camera. Hence GPP is very different from the top-view image obtained from a ceiling mounted camera. We perform both object detection and tracking in GPP. Two kinds of GPP images are utilized: gray GPP, which represents the maximal height of 3D points projecting to each pixel, and binary GPP, which is obtained by thresholding the gray GPP. For detection, a simple connected component labeling is used to detect footprints of targets in binary GPP. For tracking, a novel Pixel Level Association (PLA) strategy is proposed to link the same target in consecutive frames in gray GPP. It utilizes optical flow in gray GPP, which to our best knowledge has never been done before. Then we "back project" the detected and tracked objects in GPP to original, side-view (RGB) images. Hence we are able to detect and track objects in the side-view (RGB) images. Our system is able to robustly detect and track multiple moving targets in real time. The detection process does not rely on any target model, which means we do not need any training process. Moreover, tracking does not require any manual initialization, since all entering objects are robustly detected. We also extend the novel framework to robot navigation by tracking. As our experimental results demonstrate, our approach can achieve near prefect detection and tracking results. The performance gain in comparison to state-of-the-art trackers is most significant in the presence of occlusion and background clutter.
机译:室内环境是我们日常生活中的常见场景,在这种环境中检测和跟踪多个目标是许多应用程序的关键组成部分。然而,由于有限的空间,固有的目标外观变化(例如,目标位置),该任务仍然具有挑战性。完全或部分闭塞,大姿势变形和比例变化。在提出的方法中,我们提供了一种在室内环境下进行检测和跟踪的新颖框架,并将其扩展到机器人导航。我们方法的关键组成部分之一是从RGB-D相机创建的虚拟顶视图,称为地面投影(GPP)。使用GPP的主要优势在于,与常规的侧视图图像相比,内在目标外观变化和外部噪声在GPP中更不可能出现。此外,确定GPP中的自由空间是一项非常简单的任务,即使从移动的相机中也不会发现任何外观。因此,GPP与从吊装式摄像机获得的顶视图图像有很大不同。我们在GPP中执行对象检测和跟踪。利用了两种GPP图像:灰色GPP,其表示投影到每个像素的3D点的最大高度;以及二进制GPP,其通过对灰色GPP进行阈值处理而获得。为了进行检测,使用简单的连接组件标签来检测二进制GPP中目标的足迹。为了进行跟踪,提出了一种新颖的像素级关联(PLA)策略,以将相同目标链接到灰色GPP中的连续帧中。它利用了灰色GPP中的光流,据我们所知,这从未有过。然后,我们将GPP中检测到和跟踪的对象“投影”到原始的侧视图(RGB)图像。因此,我们能够检测和跟踪侧视图(RGB)图像中的对象。我们的系统能够实时可靠地检测和跟踪多个移动目标。检测过程不依赖于任何目标模型,这意味着我们不需要任何培训过程。而且,跟踪不需要任何手动初始化,因为所有进入的对象都被可靠地检测到。我们还通过跟踪将新颖的框架扩展到机器人导航。正如我们的实验结果所表明的,我们的方法可以实现近乎完美的检测和跟踪结果。在存在遮挡和背景杂波的情况下,与最新的跟踪器相比,性能提升最为显着。

著录项

  • 来源
  • 作者单位

    Department of Electronics and Information Engineering Huazhong University of Science and Technology, Wuhan 430074, P. R. China;

    Amazon, Seattle, WA 98105, USA;

    Department of Computer and Information Sciences Temple University, PA 19122, USA;

    Department of Electronics and Information Engineering Huazhong University of Science and Technology, Wuhan 430074, P. R. China;

    Department of Electronics and Information Engineering Huazhong University of Science and Technology, Wuhan 430074, P. R. China;

    Department of Computer and Information Sciences Temple University, PA 19122, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Online tracking; robot navigation; depth camera;

    机译:在线跟踪;机器人导航;深度相机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号