首页> 外文期刊>International journal of parallel programming >A History-Based Resource Manager for Genome Analysis Workflows Applications on Clusters with Heterogeneous Nodes
【24h】

A History-Based Resource Manager for Genome Analysis Workflows Applications on Clusters with Heterogeneous Nodes

机译:基于历史基于基因组分析的资源管理器,用于异构节点的集群中的应用程序

获取原文
获取原文并翻译 | 示例

摘要

Bioinformatics workflows require large amounts of resources and are commonly executed in clusters. Determining the adequate amount of resources for bioinformatics applications is a tricky matter, since the resource usage of a single application might vary substantially from one execution to the next. Resource management systems in clusters don't consider these variations and subsequent needs. As a result, the computing power offered by clusters is not harnessed properly, compromising both application performance and resource efficiency. To tackle these issues, we propose a History-Based Resource Manager for bioinformatics workflows applications running on clusters with heterogeneous nodes. The proposed resource manager features a prediction model that generates multiple performance predictions for each job under different combinations of cluster resources. Furthermore, the proposed resource manager includes a scheduling algorithm that considers the degree of multiprogramming of the nodes, scheduling combinations of applications for simultaneous same-node execution upon their compatibility. To test the proposed resource manager, we process two workloads formed by different amounts of workflows made up by common bioinformatics applications. Results prove that for the given cases, the proposed resource manager improves the performance obtained with SLURM, using First Come First Served policy. The proposal shows an average workflow makespan improvement range between 28 and 35%, averaging 32%, an average workflow efficiency improvement range between 75 and 83%, averaging 79%, and an average resource usage improvement range between 96 and 101%, averaging 99%. Furthermore, the proposed scheduling algorithm can improve the average workflow makespan by a range of values between 26 and 36%, averaging 31%, compared to Max-Min and Min-Min algorithms.
机译:生物信息学工作流程需要大量资源,并且通常在群集中执行。确定生物信息学应用的足够资源是一种棘手的物质,因为单个应用程序的资源使用可能会从一个执行到下一个执行。集群中的资源管理系统不会考虑这些变体和随后的需求。结果,群集提供的计算能力不正确地利用,影响应用性能和资源效率。为了解决这些问题,我们提出了一个基于历史记录的资源管理器,用于在具有异构节点的集群上运行的生物信息系统工作流程应用程序。所提出的资源管理器具有预测模型,其在群集资源的不同组合下为每个作业生成多个性能预测。此外,所提出的资源管理器包括调度算法,该调度算法考虑节点的多程序程度,调度应用程序的应用程序的组合,以在它们的兼容性时执行同时相同的节点执行。要测试所提出的资源管理器,我们处理由常见的生物信息学应用程序组成的不同数量的工作流组成的两个工作负载。结果证明,对于给定的案件,建议的资源经理可以提高使用诽谤获得的性能,首先使用首先服务的政策。该提案显示平均工作流程的提高28%至35%,平均32%,平均工作流程提高范围为75%至83%,平均值79%,平均资源使用改善范围为96到101%,平均为99 %。此外,所提出的调度算法可以通过MAX-MIN和MIN-MIN算法相比,将平均工作流程算法提高26%至36%的值,平均为31%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号