首页> 外文期刊>International journal of parallel programming >A History-Based Resource Manager for Genome Analysis Workflows Applications on Clusters with Heterogeneous Nodes
【24h】

A History-Based Resource Manager for Genome Analysis Workflows Applications on Clusters with Heterogeneous Nodes

机译:基于历史的资源管理器,用于具有异构节点的集群上的基因组分析工作流应用程序

获取原文
获取原文并翻译 | 示例

摘要

Bioinformatics workflows require large amounts of resources and are commonly executed in clusters. Determining the adequate amount of resources for bioinformatics applications is a tricky matter, since the resource usage of a single application might vary substantially from one execution to the next. Resource management systems in clusters don't consider these variations and subsequent needs. As a result, the computing power offered by clusters is not harnessed properly, compromising both application performance and resource efficiency. To tackle these issues, we propose a History-Based Resource Manager for bioinformatics workflows applications running on clusters with heterogeneous nodes. The proposed resource manager features a prediction model that generates multiple performance predictions for each job under different combinations of cluster resources. Furthermore, the proposed resource manager includes a scheduling algorithm that considers the degree of multiprogramming of the nodes, scheduling combinations of applications for simultaneous same-node execution upon their compatibility. To test the proposed resource manager, we process two workloads formed by different amounts of workflows made up by common bioinformatics applications. Results prove that for the given cases, the proposed resource manager improves the performance obtained with SLURM, using First Come First Served policy. The proposal shows an average workflow makespan improvement range between 28 and 35%, averaging 32%, an average workflow efficiency improvement range between 75 and 83%, averaging 79%, and an average resource usage improvement range between 96 and 101%, averaging 99%. Furthermore, the proposed scheduling algorithm can improve the average workflow makespan by a range of values between 26 and 36%, averaging 31%, compared to Max-Min and Min-Min algorithms.
机译:生物信息学工作流程需要大量资源,并且通常在集群中执行。为生物信息学应用程序确定足够的资源量是一件棘手的事情,因为单个应用程序的资源使用情况可能会因一次执行而不同。集群中的资源管理系统不考虑这些变化和后续需求。结果,无法正确利用群集提供的计算能力,从而损害了应用程序性能和资源效率。为了解决这些问题,我们为运行在具有异构节点的群集上的生物信息学工作流应用程序提出了基于历史的资源管理器。建议的资源管理器具有一个预测模型,该模型在群集资源的不同组合下为每个作业生成多个性能预测。此外,所提出的资源管理器包括一种调度算法,该算法考虑节点的多重编程的程度,根据应用程序的兼容性来调度应用程序的组合,以便同时执行相同的节点。为了测试建议的资源管理器,我们处理了两个工作量,这些工作量是由常见的生物信息学应用程序组成的不同数量的工作流形成的。结果证明,对于给定的情况,建议的资源管理器使用“先到先得”策略提高了SLURM的性能。提案显示,平均工作流程改进时间跨度在28%至35%之间,平均为32%,平均工作流程效率改进在75%至83%之间,平均为79%,平均资源使用改进范围在96%至101%之间,平均为99%。 %。此外,与Max-Min和Min-Min算法相比,所提出的调度算法可以将平均工作流程的跨度提高26%至36%之间的值范围,平均为31%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号